11 research outputs found
Payload Hardware and Experimental Protocol for Testing the Effect of Space Microgravity on the Resistance to Gentamicin of Stationary-Phase Uropathogenic Escherichia Coli and Its Sigma (sup S)-Deficient Mutant
Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG has been shown to differ from MG, we report here preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free flying nanosatellite in low Earth orbit. Within EcAMSats payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its delta rpoS strain to Gm. Space MG studies using EcAMSat should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity. Further, if sigma (sup s) plays the same role in space MG as in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously developed terrestrial UTI countermeasures in astronauts
The O/OREOS Mission - Astrobiology in Low Earth Orbit
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu.cm) modules: (i) a control bus, (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment, and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for micro-organisms at 3 times during the 6-month mission. We will report on the spacecraft characteristics, payload capabilities and first operational phase of the O/OREOS mission. The science and technology rationale of O/OREOS supports NASAs scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities
EcAMSat: A Small Satellite Flown to Explore the Role a Sigma Factor Plays in E. coli's Response to the Antibiotic Gentamicin
We have successfully flown the EcAMSat (Escherichia coli Antimicrobial Satellite) free-flyer mission. This was a 6U (six unit - CubeSat) small satellite that autonomously conducted an experiment in low Earth orbit to explore the impact of the space environment on antibiotic resistance in uropathogenic E. coli (UPEC) and the role a particular sigma factor plays in the response. After being held in stasis during transport to orbit, two strains - a wildtype UPEC and an isogenic mutant with a deleted gene that encodes a sigma factor - were grown to stationary phase in a fluidic card inside EcAMSat's payload, then incubated with three concentrations of the antibiotic gentamicin. The payload then administered alamarBlue (registered trademark), a redox indicator, into all wells of the fluidic card. The cells were then incubated for 144 hours and metabolic activity was measured optically using the payloads' LED (Light-Emitting Diode) and detector system. Data were then telemetered to the ground and compared to a control experiment conducted in an identical satellite in a lab. The results of this experiment will help us better understand important therapeutic targets for treating bacterial infections on Earth and in space. Such targets are particularly relevant to deep-space and long-duration missions where crew may be more susceptible to infection and treatments for them may work differently
EcAMSat: Effect of Space-Flight on Antibiotic Resistance of a Pathogenic Bacterium and its Genetic Basis
Human immune response is compromised in space and incidence of urinary tract infections (UTI) in astronauts has been reported. We have found that the causative agent of UTI, the uropathogenic Escherichia coli, becomes more resistant to gentamicin (Gm), which is commonly used to treat this disease, under modeled microgravity conditions (MMG), the increase being controlled by the stress response master regulator, s. While the wild type bacterium becomes virtually invincible under MMG, the strain missing this sigma factor barely survives. We report here preparatory ground work for testing this finding in space flight on a nanosatellite. We have shown that the effect of Gm treatment on culture viability is directly correlated to increased Alamar Blue (AB) reduction; we have identified conditions to keep the experimental elements - the bacterial cultures, Gm, and AB - in a state of viability and potency to permit successful spaceflight experimentation given the necessary constraints. Spaceflight kinetics of AB reduction will be transmitted from the satellite via telemetry. The PharmaSat hardware previously used for space experimentation with yeast was modified to permit studies with bacteria by reducing the filter pore size and increasing fluidics volume to enable more fluid exchanges. Several verification tests have been run using the nanosatellite's flight software and prototype hardware. Cells were grown to stationary phase to induce the s-controlled stress resistance and treated with Gm. Without Gm, the mutant took longer than the wild type to reduce the AB; this time difference increased almost 8 fold at 55 g/mL Gm concentration. Thus, using flight hardware the mutant shows similarly increased sensitivity to Gm compared to the wild type to that found in our pilot microtiter plate experiments. Previous inflight experiments have given contradictory results concerning bacterial antibiotic resistance; none has yet explored the involvement of specific genes in this phenomenon. With our system ready to fly in late 2015/early 2016, these questions can be approache
The O/OREOS Mission - Astrobiology in Low Earth Orbit
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu.cm) modules: (i) a control bus, (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment, and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for micro-organisms at 3 times during the 6-month mission. We will report on the spacecraft characteristics, payload capabilities and first operational phase of the O/OREOS mission. The science and technology rationale of O/OREOS supports NASAs scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities
Isolation of Rhizobium leguminosarum (biovar trifolii) Strains from Ethiopian Soils and Symbiotic Effectiveness on African Annual Clover Species
Strains of Rhizobium leguminosarum (biovar trifolii) isolated from two Ethiopian soils or obtained from a commercial source were evaluated for symbiotic effectiveness on five African annual clover species. Numerous Rhizobium trifolii strains that exhibited varying levels of symbiotic effectiveness were isolated from both soils (a nitosol and a vertisol), and it was possible to identify strains that were highly effective for each clover species. The soil isolates were, as a group, superior to the strains from the commercial source. Several R. trifolii strains were found to be effective on more than one clover species, and there appeared to be at least two and possibly three distinct cross-inoculation effectiveness groups
Flight Results from the GeneSat-1 Biological Microsatellite Mission
The mission of the GeneSat-1 technology demonstration spacecraft is to validate the use of research-quality instrumentation for in situ biological research and processing. To execute this mission, the GeneSat-1 satellite was launched on December 16, 2006 from Wallops Flight Facility as a secondary payload off of a Minotaur launch vehicle. During the first week of operation, the core biological growth test was successfully executed, and by the end of the first month of operation all primary science and engineering test objectives had been successfully performed. In its current phase of operation, a variety of secondary technology characterizations tests are being performed, and a wide range of educational, training, and public outreach programs are being supported. This paper reviews the GeneSat-1 mission system, discusses the government-industry-university teaming approach, and presents flight results pertaining to the primary scientific and engineering experiments
BioSentinel: Monitoring DNA Damage Repair Beyond Low Earth Orbit on a 6U Nanosatellite
We are designing and developing a “6U” nanosatellite as a secondary payload to fly aboard NASA’s Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel’s 12 to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and compare that to information from onboard physical radiation sensors. This data will be available for validation of existing models and for extrapolation to humans. The BioSentinel experiment will use the organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. The flight strain will include engineered genetic defects that prevent growth and division until a radiation-induced DSB activates the yeast’s DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its repair. The yeast will be carried in the dry state in independent microwells with support electronics. The measurement subsystem will sequentially activate and monitor wells, optically tracking cell growth and metabolism. BioSentinel will also include TimePix radiation sensors implemented by JSC’s RadWorks group. Dose and Linear Energy Transfer (LET) data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels. BioSentinel will mature nanosatellite technologies to include: deep space communications and navigation, autonomous attitude control and momentum management, and micropropulsion systems to provide an adaptable nanosatellite platform for deep space uses
Initial Flight Results from the PharmaSat Biological Microsatellite Mission
The mission of the PharmaSat biological microsatellite is to investigate the efficacy of anti-fungal agents in the spaceflight environment. The satellite uses autonomous, in situ bio-analytical and sample management technologies in order to culture and characterize the growth of multiple samples of yeast, which are exposed to differing levels of an anti-fungal agent during their growth cycle. The satellite uses a 10 cm x 10 cm x 30 cm Cubesat-class structure with body-mounted solar panels, an ISM-band transceiver, and a simple PIC-class microcontroller for the main flight computer. PharmaSat was launched on May 19 , 2009 from Wallops Flight Facility as a secondary payload on a Minotaur launch vehicle. During the first week of operation, the primary biological experiment was conducted, and data from this experiment was downloaded thereby achieving mission success. The PharmaSat design and mission control architecture inherits many features and design strategies from the GeneSat-1 mission, which was previously developed by the same design group at NASA Ames Research Center and Santa Clara University. This paper presents the PharmaSat mission, the design of its spacecraft and ground segment, and initial flight results