50 research outputs found

    Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats

    Get PDF
    Purpose: Pulsed electromagnetic fields (PEMF) are currently used in the treatment of spinal fusions and non-unions. There are indications that PEMF might also be effective in the treatment of osteoporosis. In this study we examined whether whole-body PEMF treatment affects the bone microarchitecture in an osteoporotic rat model. Methods: Twenty-week-old female rats were ovariectomised (n020). Four different PEMF treatment protocols based on previous experimental studies and based on clinically used PEMF signals were examined (2 h/day, 5 days/week). A control group did not receive PEMF. At zero, three and six weeks cancellous and cortical bone architectural changes at the proximal tibia were evaluated using in vivo microCT scanning. Results: PEMF treatment did not induce any changes in cancellous or cortical bone compared to untreated controls. Conclusions: Although previous studies have shown strong effects of PEMF in osteoporosis we were unable to demonstrate this in any of the treatment protocols. Using in vivo microCT scanning we were able to identify small bone changes in time. Subtle differences in the experimental setup might explain the differences in study outcomes in the literature. Since PEMF treatment is safe, future experimental studies on the effect of PEMF on bone can better be performed directly on humans, eliminating the potential translation issues between animals and humans. In this study we found no support for the use of PEMF in the treatment of osteoporosis

    Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p

    Effects of low power laser irradiation on bone healing in animals: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The meta-analysis was performed to identify animal research defining the effects of low power laser irradiation on biomechanical indicators of bone regeneration and the impact of dosage.</p> <p>Methods</p> <p>We searched five electronic databases (MEDLINE, EMBASE, PubMed, CINAHL, and Cochrane Database of Randomised Clinical Trials) for studies in the area of laser and bone healing published from 1966 to October 2008. Included studies had to investigate fracture healing in any animal model, using any type of low power laser irradiation, and use at least one quantitative biomechanical measures of bone strength. There were 880 abstracts related to the laser irradiation and bone issues (healing, surgery and assessment). Five studies met our inclusion criteria and were critically appraised by two raters independently using a structured tool designed for rating the quality of animal research studies. After full text review, two articles were deemed ineligible for meta-analysis because of the type of injury method and biomechanical variables used, leaving three studies for meta-analysis. Maximum bone tolerance force before the point of fracture during the biomechanical test, 4 weeks after bone deficiency was our main biomechanical bone properties for the Meta analysis.</p> <p>Results</p> <p>Studies indicate that low power laser irradiation can enhance biomechanical properties of bone during fracture healing in animal models. Maximum bone tolerance was statistically improved following low level laser irradiation (average random effect size 0.726, 95% CI 0.08 - 1.37, p 0.028). While conclusions are limited by the low number of studies, there is concordance across limited evidence that laser improves the strength of bone tissue during the healing process in animal models.</p

    Cervical myeloradiculopathy caused by arthrotic hypertrophy of the posterior facets and laminae

    No full text

    Three-dimensional motion of the uncovertebral joint during head rotation

    No full text
    corecore