83 research outputs found
Hominin palaeoecology in Late Pliocene Malawi : first insights from isotopes (13C, 18O) in mammal teeth
Carbon-13 and oxygen-18 abundances were measured in large mammal skeletal remains (tooth enamel, dentine and bone) from the Chiwondo Beds in Malawi, which were dated by biostratigraphic correlation to ca. 2.5 million years ago. The biologic isotopic patterns, in particular the difference in carbon-13 abundances between grazers and browsers and the difference in oxygen-18 abundances between semi-aquatic and terrestrial herbivores, were preserved in enamel, but not in dentine and bone. The isotopic results obtained from the skeletal remains from the Chiwondo Beds indicate a dominance of savannah habitats with some trees and shrubs. This environment was more arid than the contemporaneous Ndolanya Beds in Tanzania. The present study confirms that robust australopithecines were able to live in relatively arid environments and were not confined to more mesic environments elsewhere in southern Africa
Molar macrowear reveals Neanderthal eco-geographic dietary variation
Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources
Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation: 1. major and minor element variation [Discussion paper]
Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project intends to provide a detailed data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe, to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lakustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system.
Secondary alteration effects in particular FeO, MnO, SO3 and F concentrations, which are 2 to 10 times higher in fossil than in modern enamel; secondary enrichments in fossil dentin and cement are even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ~1 %). Linear regression analysis reveals very tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40 % to 300 %) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite variation.
Fossil enamel from hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granite and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation.
Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed the observed element distribution can only be explained by recrystallization of existing and addition of new apatite during maturation. Perhaps the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim.
The linkage between lake and river water composition, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation
Exploring Hominin and Non-hominin Primate Dental Fossil Remains with Neutron Microtomography
Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution virtual histology . Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen
Disentangling isolated dental remains of Asian Pleistocene hominins and pongines
International audienceScholars have debated the taxonomic identity of isolated primate teeth from the Asian Pleis-tocene for over a century, which is complicated by morphological and metric convergence between orangutan (Pongo) and hominin (Homo) molariform teeth. Like Homo erectus, Pongo once showed considerable dental variation and a wide distribution throughout mainland and insular Asia. In order to clarify the utility of isolated dental remains to document the presence of hominins during Asian prehistory, we examined enamel thickness, enamel-den-tine junction shape, and crown development in 33 molars from G. H. R. von Koenigswald's Chinese Apothecary collection (11 Sinanthropus officinalis [= Homo erectus], 21 "Heman-thropus peii," and 1 "Hemanthropus peii" or Pongo) and 7 molars from Sangiran dome (either Homo erectus or Pongo). All fossil teeth were imaged with non-destructive conventional and/or synchrotron micro-computed tomography. These were compared to H. erectus teeth from Zhoukoudian, Sangiran and Trinil, and a large comparative sample of fossil Pongo, recent Pongo, and recent human teeth. We find that Homo and Pongo molars overlap substantially in relative enamel thickness; molar enamel-dentine junction shape is more distinctive, with Pongo showing relatively shorter dentine horns and wider crowns than Homo. Long-period line periodicity values are significantly greater in Pongo than in H. erec-tus, leading to longer crown formation times in the former. Most of the sample originally assigned to S. officinalis and H. erectus shows greater affinity to Pongo than to the hominin comparative sample. Moreover, enamel thickness, enamel-dentine junction shape, and a long-period line periodicity value in the "Hemanthropus peii" sample are indistinguishable from fossil Pongo. These results underscore the need for additional recovery and study of associated dentitions prior to erecting new taxa from isolated teeth
Dietary strategies of Pleistocene Pongo sp. and Homo erectus on Java (Indonesia)
During the Early to Middle Pleistocene, Java was inhabited by hominid taxa of great diversity. However, their seasonal dietary strategies have never been explored. We undertook geochemical analyses of orangutan (Pongo sp.), Homo erectus and other mammalian Pleistocene teeth from Sangiran. We reconstructed past dietary strategies at subweekly resolution and inferred seasonal ecological patterns. Histologically controlled spatially resolved elemental analyses by laser-based plasma mass spectrometry confirmed the preservation of authentic biogenic signals despite the effect of spatially restricted diagenetic overprint. The Sr/Ca record of faunal remains is in line with expected trophic positions, contextualizing fossil hominid diet. Pongo sp. displays marked seasonal cycles with ~3 month-long strongly elevated Sr/Ca peaks, reflecting contrasting plant food consumption presumably during the monsoon season, while lower Sr/Ca ratios suggest different food availability during the dry season. In contrast, omnivorous H. erectus shows low and less accentuated intra-annual Sr/Ca variability compared to Pongo sp., with δ13C data of one individual indicating a dietary shift from C4 to a mix of C3 and C4 plants. Our data suggest that H. erectus on Java was maximizing the resources available in more open mosaic habitats and was less dependent on variations in seasonal resource availability. While still influenced by seasonal food availability, we infer that H. erectus was affected to a lesser degree than Pongo sp., which inhabited monsoonal rain forests on Java. We suggest that H. erectus maintained a greater degree of nutritional independence by exploiting the regional diversity of food resources across the seasons
Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia
Since the first discovery of Pithecanthropus (Homo) erectus by E. Dubois at Trinil in 1891, over 200 hominid dentognathic remains have been collected from the Early to Middle Pleistocene deposits of Java, Indonesia, forming the largest palaeoanthropological collection in South East Asia. Most of these fossils are currently attributed to H. erectus. However, because of the substantial morphological and metric variation in the Indonesian assemblage, some robust specimens, such as the partial mandibles Sangiran 5 and Sangiran 6a, were formerly variably allocated to other taxa (Meganthropus palaeojavanicus, Pithecanthropus dubius, Pongo sp.). To resolve the taxonomic uncertainty surrounding these and other contentious Indonesian hominid specimens, we used occlusal fingerprint analysis (OFA) to reconstruct their chewing kinematics; we also used various morphometric approaches based on microtomography to examine the internal dental structures. Our results confirm the presence of Meganthropus as a Pleistocene Indonesian hominid distinct from Pongo, Gigantopithecus and Homo, and further reveal that Dubois’s H. erectus paratype molars from 1891 are not hominin (human lineage), but instead are more likely to belong to Meganthropus
Cross-validated classification results in frequencies based on M1–M2
Cross-validated classification results in frequencies based on M1–M2.Peer reviewe
Palaeoproteomic phylogenetic analysis
Pleistocene Pongo teeth show substantial variation in size and morphology, fueling taxonomic debates about the paleodiversity of the genus. We investigated prominent features of the enamel-dentine-junction junction (EDJ)–phylogenetically informative internal structures–of 71 fossil Pongo lower molars from various sites by applying geometric morphometrics and conducted paleoproteomic analyses from enamel proteins to attempt to identify extinct orangutan species. Forty-three orangutan lower molars representing Pongo pygmaeus and Pongo abelii were included for comparison. The shape of the EDJ was analyzed by placing five landmarks on the tip of the main dentine horns, and 142 semilandmarks along the marginal ridges connecting the dentine horns. Paleoproteomic analyses were conducted on 15 teeth of Late Pleistocene Pongo using high-resolution tandem mass spectrometry. The geometric morphometric results show variations in EDJ shape regarding aspects of the height and position of the dentine horns and connecting ridges. Despite the issue of molar position and sample size, modern molars are distinguished from fossil counterparts by their elongated tooth outline and narrowly positioned dentine horns. Proteomic results show that neither a distinction of P. pygmaeus and P. abelii, nor a consistent allocation of fossil specimens to extant species is feasible. Based on the EDJ shape, the (late) Middle to Late Pleistocene Pongo samples from Vietnam share the same morphospace, supporting the previous allocation to P. devosi, although substantial overlap with Chinese fossils could also indicate close affinities with P. weidenreichi. The hypothesis that both species represent one chronospecies cannot be ruled out. Two fossil specimens, one from Tam Hay Marklot (Laos, Late Pleistocene), and another from Sangiran (Java, Early to Middle Pleistocene), along with some specimens within the Punung sample (Java), exhibit affinities with Pongo abelii. The Punung fossils might represent a mix of early Late Pleistocene and later specimens (terminal Pleistocene to Holocene) related to modern Pongo. The taxonomy and phylogeny of the complete Punung sample needs to be further investigated.Peer reviewe
Cross-validated classification results in percentages based on M3
Cross-validated classification results in percentages based on M3.Peer reviewe
- …