8 research outputs found
A Review on Machine Learning and Deep Learning Techniques Applied to Liquid Biopsy
For more than a decade, machine learning (ML) and deep learning (DL) techniques have been a mainstay in the toolset for the analysis of large amounts of weakly correlated or high-dimensional data. As new technologies for detecting and measuring biochemical markers from bodily fluid samples (e.g., microfluidics and labs-on-a-chip) revolutionise the industry of diagnostics and precision medicine, the heterogeneity and complexity of the acquired data present a growing challenge to their interpretation and usage. In this chapter, we attempt to review the state of ML and DL fields as applied to the analysis of liquid biopsy data and summarise the available corpus of techniques and methodologies
Non-Alcoholic Steatohepatitis, Liver Cirrhosis and Hepatocellular Carcinoma: The Molecular Pathways
Non-alcoholic steatohepatitis (NASH) is growing into global problem, mainly due to NASH-induced cirrhosis and hepatocellular carcinoma (HCC), that can develop either subsequently to cirrhosis or preceding it. In addition, NASH-induced cirrhosis constitutes a significant fraction of cases diagnosed as cryptogenic cirrhosis. Thus, there is a need for deeper understanding of the molecular basis, leading to liver steatosis, then—to the associated inflammation seen in NASH, loss of liver architecture and cirrhosis, followed or paralleled by carcinogenesis and HCC. Insulin resistance, increased hepatic iron level, and certain cytokines, including TNF-α and IL-6 derived from extrahepatic adipose tissues, can trigger the chain of events. The imbalance between leptin and adiponectin is important as well. These markers remain important during the whole course from NASH through liver cirrhosis to HCC. The molecular pathogenesis substantiates treatment: hypertriglyceridemia can be lowered by low calorie diet; mTOR complex can become inhibited by physical activity and metformin; cholesterol synthesis, RAF/MAPK1/ERK and p21 pathway by statins; inflammation by pentoxyfillin, and kinases (in HCC) by sorafenib. Bidirectional regulation of telomere attrition, senescence and p21 pathway, restoration of wild-type p53 activity and regulation of miRNA network represent attractive future treatment options. Focusing on relevant molecular pathways allows deeper understanding of NASH pathogenesis, leading to identification of predictive markers and treatment targets
Thyroid Nodules in Diagnostic Pathology: From Classic Concepts to Innovations
Thyroid nodules are frequent in general population, found in 3.7–7% of people by palpation and 42–67% by ultrasonography (US). The differential diagnosis ranges from papillary (PC), follicular (FC) and medullary (MC) carcinomas to follicular adenoma (FA) and colloid goitre. Cancer risk in thyroid nodules varies: 5% in masses found by palpation, 1.6–15% by US, 3.9–11.3% by computed tomography (CT), 5–6% by magnetic resonance imaging (MRI) and 30–50% by positron emission tomography (PET). The final diagnosis depends on fine needle aspiration (FNA) findings and histopathology. The recent WHO classification (2017) is based on classic morphology, including assessment of invasion and nuclei. New entities are defined to designate tumours with doubtful invasion or controversial nuclear features. By immunohistochemistry, PC expresses HBME-1, TROP-2, CITED1 and CK19. Notably, PC can stain for CD20. MC is recognised by neuroendocrine differentiation. To distinguish FA vs. FC, evaluation of HBME-1, p27 and galectin has been suggested. Regarding miRNAs, miR-146b, miR-222, miR-221 and miR-181b are upregulated, while miR-145, miR-451, miR-613 and miR-137 are downregulated in PC. FC features downregulated miR-199a-5p and upregulated miR-197 and miR-346. In MC, miR-21 and miR-129-5p are downregulated. In addition, increased systemic inflammatory reaction can be poor prognostic factor in thyroid cancer. The aim of this chapter is to review classic and innovative histopathology of thyroid nodules for diagnostic pathology practice and research in multidisciplinary thyroid teams
Liquid Biopsy in Patients with Thyroid Carcinoma
Thyroid cancer is a comparatively rare tumor, which affects 1–5% of women and approximately 2% of men, although it is the most common endocrine malignancy worldwide. Furthermore, the incidence of thyroid cancer has been increasing remarkably in the last decades. Currently, diagnosis of thyroid cancer mainly is based on cytological criteria. Although fine needle aspiration is a minimally invasive procedure, complications can occur. Correct diagnosis is mandatory to select patients for surgical intervention and to determine appropriate extent of operation. Overdiagnosis and the associated unnecessary surgery should be avoided as it might also lead to complications. Therefore it is important to practice noninvasive methods not only for early diagnosis of thyroid cancer but also for estimation of prognosis. Liquid biopsy is a promising, noninvasive method that can provide detection of circulating tumor cells (CTCs) as well as circulating nucleic acids such as DNA, mRNA, and microRNA in a blood sample. The aim of the chapter is to highlight the efficacy of liquid biopsy for diagnosis and prognosis of thyroid cancer. The chapter will represent a comprehensive literature review based on recent PubMed publications (mainly 2012–2018)
Innovative Blood Tests for Hepatocellular Carcinoma: Liquid Biopsy and Evaluation of Systemic Inflammatory Reaction
Hepatocellular carcinoma (HCC) is an aggressive tumour associated with dismal prognosis. To improve the outcome, early diagnostics is important. At present, classical HCC diagnostics is based on evaluation of risk factors, surveillance in cirrhotic patients, preference for non-invasive diagnosis by computed tomography or magnetic resonance imaging and biopsy confirmation in controversial cases. However, ambiguous radiological presentation, biopsy-related complications or insufficient representation of the pathology in the tissue core are well-known problems. Panel assessment of microRNAs has diagnostic and prognostic value; thus, in future, microRNA-based liquid biopsy could partially reduce the need for core biopsies. Systemic inflammatory reaction (SIR), characterised mainly by neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and Glasgow prognostic score, may have prognostic value and can be incorporated in criteria for certain treatment approaches, e.g., becoming an adjunct to Milan criteria. Thus, innovations in HCC diagnostics are expected in the field of miRNA-based liquid biopsy for diagnosis/prognosis and SIR for prognosis/selection of treatment
Diagnostic Algorithm of Hepatocellular Carcinoma: Classics and Innovations in Radiology and Pathology
In the global cancer statistics, hepatocellular carcinoma (HCC) ranges sixth by incidence and second by oncological mortality. The risk factors comprise hepatitis B and C virus infection, non-alcoholic steatohepatitis, as well as long-lasting peroral exposure to alcohol or aflatoxins. Liver cirrhosis is the most important single predisposing factor. Ultrasonography once per 6 months is recommended for surveillance in cirrhotic patients. Computed tomography (CT) and magnetic resonance imaging (MRI) represent the gold standard of non-invasive diagnostics while core biopsy and/or immunohistochemistry (IHC) are indicated for controversial and non-cirrhotic HCC cases. Molecular classification is under development. At present, classics of HCC diagnostics is based on evaluation of risk factors, surveillance in cirrhotic patients, preference for CT or MRI-confirmed non-invasive diagnosis and biopsy proof in equivocal cases. Diffusion-weighted imaging and hepatobiliary phase contrasting represent significant recent developments in MRI. Contrast-enhanced ultrasonography is recommended by some but not all guidelines. Positron emission tomography is advocated before liver transplantation to detect extrahepatic metastases but has limited role in the initial diagnostic evaluation of liver nodule. Innovations are expected in the field of molecular diagnostics, including IHC panels and novel antigens, e.g. clathrin and bile salt export pump protein, and development of molecular classification
Cellular immune response induced by dna immunization of mice with drug resistant integrases of hiv-1 clade a offers partial protection against growth and metastatic activity of integrase-expressing adenocarcinoma cells
Funding Information: Funding: Experiments were supported by the grants of the Russian Science Fund 15-15-30039, Russian Fund for Basic Research 20-04-01034, Latvian Science Fund LZP 2018-2-03-08, and EU-ROPARTNER project “Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection of University of Lodz, Poland, for interdisciplinary research and innovation”. Mobility and method acquisition were supported by Swedish institute PI project 19806/2016TP, and Horizon 2020 project VACTRAIN#692293. MI and BW were supported by Horizon 2020 grant EAVI contract N68113. Funding Information: Experiments were supported by the grants of the Russian Science Fund 15-15-30039, Russian Fund for Basic Research 20-04-01034, Latvian Science Fund LZP 2018-2-03-08, and EU-ROPARTNER project ?Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection of University of Lodz, Poland, for interdisciplinary research and innovation?. Mobility and method acquisition were supported by Swedish institute PI project 19806/2016TP, and Horizon 2020 project VACTRAIN#692293. MI and BW were supported by Horizon 2020 grant EAVI contract N68113. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209–239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.publishersversionPeer reviewe
Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer