182 research outputs found
Совершенствование механизмов субсидирования региональных перевозок в России
The article describes the results of research and verification of amounts of required budgetary funds for regional transportation subsidization in Russia.Излагаются результаты исследования и обоснования размеров необходимых бюджетных средств для субсидирования региональных авиаперевозок в России
Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion
OBJECTIVE—Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion
Bayesian DNA copy number analysis
<p>Abstract</p> <p>Background</p> <p>Some diseases, like tumors, can be related to chromosomal aberrations, leading to changes of DNA copy number. The copy number of an aberrant genome can be represented as a piecewise constant function, since it can exhibit regions of deletions or gains. Instead, in a healthy cell the copy number is two because we inherit one copy of each chromosome from each our parents.</p> <p>Bayesian Piecewise Constant Regression (BPCR) is a Bayesian regression method for data that are noisy observations of a piecewise constant function. The method estimates the unknown segment number, the endpoints of the segments and the value of the segment levels of the underlying piecewise constant function. The Bayesian Regression Curve (BRC) estimates the same data with a smoothing curve. However, in the original formulation, some estimators failed to properly determine the corresponding parameters. For example, the boundary estimator did not take into account the dependency among the boundaries and succeeded in estimating more than one breakpoint at the same position, losing segments.</p> <p>Results</p> <p>We derived an improved version of the BPCR (called mBPCR) and BRC, changing the segment number estimator and the boundary estimator to enhance the fitting procedure. We also proposed an alternative estimator of the variance of the segment levels, which is useful in case of data with high noise. Using artificial data, we compared the original and the modified version of BPCR and BRC with other regression methods, showing that our improved version of BPCR generally outperformed all the others. Similar results were also observed on real data.</p> <p>Conclusion</p> <p>We propose an improved method for DNA copy number estimation, mBPCR, which performed very well compared to previously published algorithms. In particular, mBPCR was more powerful in the detection of the true position of the breakpoints and of small aberrations in very noisy data. Hence, from a biological point of view, our method can be very useful, for example, to find targets of genomic aberrations in clinical cancer samples.</p
A new classification method using array Comparative Genome Hybridization data, based on the concept of Limited Jumping Emerging Patterns
<p>Abstract</p> <p>Background</p> <p>Classification using aCGH data is an important and insufficiently investigated problem in bioinformatics. In this paper we propose a new classification method of DNA copy number data based on the concept of limited Jumping Emerging Patterns. We present the comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the case of high-throughput data.</p> <p>Results</p> <p>Our results revealed that the classification performance using limJEPClassifier is significantly higher than other methods. Furthermore, we show that application of the limited JEP's can significantly improve classification, when strongly unbalanced data are given.</p> <p>Conclusion</p> <p>Nowadays, aCGH has become a very important tool, used in research of cancer or genomic disorders. Therefore, improving classification of aCGH data can have a great impact on many medical issues such as the process of diagnosis and finding disease-related genes. The performed experiment shows that the application of Jumping Emerging Patterns can be effective in the classification of high-dimensional data, including these from aCGH experiments.</p
Statistical techniques to construct assays for identifying likely responders to a treatment under evaluation from cell line genomic data
<p>Abstract</p> <p>Background</p> <p>Developing the right drugs for the right patients has become a mantra of drug development. In practice, it is very difficult to identify subsets of patients who will respond to a drug under evaluation. Most of the time, no single diagnostic will be available, and more complex decision rules will be required to define a sensitive population, using, for instance, mRNA expression, protein expression or DNA copy number. Moreover, diagnostic development will often begin with in-vitro cell-line data and a high-dimensional exploratory platform, only later to be transferred to a diagnostic assay for use with patient samples. In this manuscript, we present a novel approach to developing robust genomic predictors that are not only capable of generalizing from in-vitro to patient, but are also amenable to clinically validated assays such as qRT-PCR.</p> <p>Methods</p> <p>Using our approach, we constructed a predictor of sensitivity to dacetuzumab, an investigational drug for CD40-expressing malignancies such as lymphoma using genomic measurements of cell lines treated with dacetuzumab. Additionally, we evaluated several state-of-the-art prediction methods by independently pairing the feature selection and classification components of the predictor. In this way, we constructed several predictors that we validated on an independent DLBCL patient dataset. Similar analyses were performed on genomic measurements of breast cancer cell lines and patients to construct a predictor of estrogen receptor (ER) status.</p> <p>Results</p> <p>The best dacetuzumab sensitivity predictors involved ten or fewer genes and accurately classified lymphoma patients by their survival and known prognostic subtypes. The best ER status classifiers involved one or two genes and led to accurate ER status predictions more than 85% of the time. The novel method we proposed performed as well or better than other methods evaluated.</p> <p>Conclusions</p> <p>We demonstrated the feasibility of combining feature selection techniques with classification methods to develop assays using cell line genomic measurements that performed well in patient data. In both case studies, we constructed parsimonious models that generalized well from cell lines to patients.</p
Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays
Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms. The proposed method does not require matched normal samples, and can estimate the unknown genotypes simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes
Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers
Age is one of the most important risk factors for human malignancies, including breast cancer; in addition, age-at-diagnosis has been shown to be an independent indicator of breast cancer prognosis. However, except for inherited forms of breast cancer, there is little genetic or epigenetic understanding of the biological basis linking aging with sporadic breast cancer incidence and its clinical behavior
Detection of copy number variation from array intensity and sequencing read depth using a stepwise Bayesian model
Abstract Background Copy number variants (CNVs) have been demonstrated to occur at a high frequency and are now widely believed to make a significant contribution to the phenotypic variation in human populations. Array-based comparative genomic hybridization (array-CGH) and newly developed read-depth approach through ultrahigh throughput genomic sequencing both provide rapid, robust, and comprehensive methods to identify CNVs on a whole-genome scale. Results We developed a Bayesian statistical analysis algorithm for the detection of CNVs from both types of genomic data. The algorithm can analyze such data obtained from PCR-based bacterial artificial chromosome arrays, high-density oligonucleotide arrays, and more recently developed high-throughput DNA sequencing. Treating parameters--e.g., the number of CNVs, the position of each CNV, and the data noise level--that define the underlying data generating process as random variables, our approach derives the posterior distribution of the genomic CNV structure given the observed data. Sampling from the posterior distribution using a Markov chain Monte Carlo method, we get not only best estimates for these unknown parameters but also Bayesian credible intervals for the estimates. We illustrate the characteristics of our algorithm by applying it to both synthetic and experimental data sets in comparison to other segmentation algorithms. Conclusions In particular, the synthetic data comparison shows that our method is more sensitive than other approaches at low false positive rates. Furthermore, given its Bayesian origin, our method can also be seen as a technique to refine CNVs identified by fast point-estimate methods and also as a framework to integrate array-CGH and sequencing data with other CNV-related biological knowledge, all through informative priors.</p
- …