369 research outputs found

    Free energies and critical exponents of the A_1^{(1)}, B_n^{(1)}, C_n^{(1)} and D_n^{(1)} face models

    Full text link
    We obtain the free energies and critical exponents of models associated with elliptic solutions of the star-triangle relation and reflection equation. The models considered are related to the affine Lie algebras A_1^{(1)}, B_n^{(1)},C_n^{(1)} and D_n^{(1)}. The bulk and surface specific heat exponents are seen to satisfy the scaling relation 2\alpha_s = \alpha_b + 2. It follows from scaling relations that in regime III the correlation length exponent \nu is given by \nu=(l+g)/2g, where l is the level and g is the dual Coxeter number. In regime II we find \nu=(l+g)/2l.Comment: 9 pages, Latex, no figure

    Ground State of the Quantum Symmetric Finite Size XXZ Spin Chain with Anisotropy Parameter Δ=1/2\Delta = {1/2}

    Full text link
    We find an analytic solution of the Bethe Ansatz equations (BAE) for the special case of a finite XXZ spin chain with free boundary conditions and with a complex surface field which provides for Uq(sl(2))U_q(sl(2)) symmetry of the Hamiltonian. More precisely, we find one nontrivial solution, corresponding to the ground state of the system with anisotropy parameter Δ=1/2\Delta = {1/2} corresponding to q3=−1q^3 = -1.Comment: 6 page

    Switching kinetics of ferroelectric polymer nanomesas

    Get PDF
    The switching dynamics and switching time of ferroelectric nanomesas grown from the paraelectric phase of ultrathin Langmuir–Blodgett vinylidene fluoride and trifluoroethylene copolymer films are investigated. Ferroelectric nanomesas are created through heat treatment and self-organization and have an average height of 10 nm and an average diameter of 100 nm. Ferroelectric nanomesas are highly crystalline and are in the ferroelectric phase and switch faster than 50 μs. The dependence of switching time on applied voltage implies an extrinsic switching nature

    Auxiliary matrices on both sides of the equator

    Full text link
    The spectra of previously constructed auxiliary matrices for the six-vertex model at roots of unity are investigated for spin-chains of even and odd length. The two cases show remarkable differences. In particular, it is shown that for even roots of unity and an odd number of sites the eigenvalues contain two linear independent solutions to Baxter's TQ-equation corresponding to the Bethe ansatz equations above and below the equator. In contrast, one finds for even spin-chains only one linear independent solution and complete strings. The other main result is the proof of a previous conjecture on the degeneracies of the six-vertex model at roots of unity. The proof rests on the derivation of a functional equation for the auxiliary matrices which is closely related to a functional equation for the eight-vertex model conjectured by Fabricius and McCoy.Comment: 22 pages; 2nd version: one paragraph added in the conclusion and some typos correcte

    The transmission of nosocomial pathogens in an intensive care unit: a space–time clustering and structural equation modelling approach

    Get PDF
    We investigated the incidence of cases of nosocomial pathogens and risk factors in an intensive treatment unit ward to determine if the number of cases is dependent on location of patients and the colonization/infection history of the ward. A clustering approach method was developed to investigate the patterns of spread of cases through time for five microorganisms [methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter spp., Klebsiella spp., Candida spp., and Pseudomonas aeruginosa] using hospital microbiological monitoring data and ward records of patient-bed use. Cases of colonization/infection by MRSA, Candida and Pseudomonas were clustered in beds and through time while cases of Klebsiella and Acinetobacter were not. We used structural equation modelling to analyse interacting risk factors and the potential pathways of transmission in the ward. Prior nurse contact with colonized/infected patients, mediated by the number of patient-bed movements, were important predictors for all cases, except for those of Pseudomonas. General health and invasive surgery were significant predictors of cases of Candida and Klebsiella. We suggest that isolation and bed movement as a strategy to manage MRSA infections is likely to impact upon the incidence of cases of other opportunist pathogen

    Optical second harmonic generation probe of two-dimensional ferroelectricity

    Get PDF
    Optical second harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of copolymer vinylidene fluoride with trifluorethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of LB films and a thickness independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.Comment: 9 pages, 2 figures, Optics Letters, in prin

    Polarization switching at the nanoscale in ferroelectric copolymer thin films

    Get PDF
    The polarization switching kinetics were measured at the nanoscale in continuous thin films of a ferroelectric copolymer of vinylidene fluoride and trifluoroethylene. The dependence of the switching rate on voltage for a 54-nm thick film exhibits extrinsic nucleation and domain-growth type kinetics with no true threshold coercive field, and is qualitatively different from the behavior of an 18-nm thick film, which exhibits intrinsic switching kinetics, and a true threshold field. The results are consistent with studies of thin film capacitors of much larger area and with a recent refinement of the theory of the critical size for intrinsic switching

    Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Get PDF
    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO3 is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.Comment: 14 pages, 11 figures, submitted to J. Appl. Phy
    • …
    corecore