434 research outputs found

    Shell Models of Magnetohydrodynamic Turbulence

    Full text link
    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfven waves and the Hall effect.Comment: published in Physics Report

    Lifetime of Surface Features and Stellar Rotation: A Wavelet Time-Frequency Approach

    Get PDF
    We explore subtle variations in disk-integrated measurements spanning \lsim 18 years of stellar surface magnetism by using a newly developed time-frequency gapped wavelet algorithm. We present results based on analysis of the Mount Wilson Ca II H and K emission fluxes in four, magnetically-active stars (HD 1835 [G2V], 82885 [G8IV-V], 149661 [K0V] and 190007 [K4V]) and sensitivity tests using artificial data. When the wavelet basis is appropriately modified (i.e., when the time-frequency resolution is optimized), the results are consistent with the existence of spatially localized and long-lived Ca II features (assumed here as activity regions that tend to recur in narrowly-confined latitude bands), especially in HD 1835 and 82885. This interpretation is based on the observed persistence of relatively localized Ca II wavelet power at a narrow range of rotational time scales, enduring as long as \gsim 10 years.Comment: to appear in THE ASTROPHYSICAL JOURNAL LETTER

    Direct Measurement of Effective Magnetic Diffusivity in Turbulent Flow of Liquid Sodium

    Full text link
    The first direct measurements of effective magnetic diffusivity in turbulent flow of electro-conductive fluids (the so-called beta-effect) under magnetic Reynolds number Rm >> 1 are reported. The measurements are performed in a nonstationary turbulent flow of liquid sodium, generated in a closed toroidal channel. The peak level of the Reynolds number reached Re \approx 3 10^6, which corresponds to the magnetic Reynolds number Rm \approx 30. The magnetic diffusivity of the liquid metal was determined by measuring the phase shift between the induced and the applied magnetic fields. The maximal deviation of magnetic diffusivity from its basic (laminar) value reaches about 50% .Comment: 5 pages, 6 figuser, accepted in PR

    Screw dynamo in a time-dependent pipe flow

    Full text link
    The kinematic dynamo problem is investigated for the flow of a conducting fluid in a cylindrical, periodic tube with conducting walls. The methods used are an eigenvalue analysis of the steady regime, and the three-dimensional solution of the time-dependent induction equation. The configuration and parameters considered here are close to those of a dynamo experiment planned in Perm, which will use a torus-shaped channel. We find growth of an initial magnetic field by more than 3 orders of magnitude. Marked field growth can be obtained if the braking time is less than 0.2 s and only one diverter is used in the channel. The structure of the seed field has a strong impact on the field amplification factor. The generation properties can be improved by adding ferromagnetic particles to the fluid in order to increase its relative permeability,but this will not be necessary for the success of the dynamo experiment. For higher magnetic Reynolds numbers, the nontrivial evolution of different magnetic modes limits the value of simple `optimistic' and `pessimistic' estimates.Comment: 10 pages, 12 figure
    • …
    corecore