1,205 research outputs found

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Modeling human behavior in user-adaptive systems: recent advances using soft computing techniques

    Get PDF
    Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application

    A fairness assessment of mobility-based COVID-19 case prediction models

    Get PDF
    In light of the outbreak of COVID-19, analyzing and measuring human mobility has become increasingly important. A wide range of studies have explored spatiotemporal trends over time, examined associations with other variables, evaluated non-pharmacologic interventions (NPIs), and predicted or simulated COVID-19 spread using mobility data. Despite the benefits of publicly available mobility data, a key question remains unanswered: are models using mobility data performing equitably across demographic groups? We hypothesize that bias in the mobility data used to train the predictive models might lead to unfairly less accurate predictions for certain demographic groups. To test our hypothesis, we applied two mobility-based COVID infection prediction models at the county level in the United States using SafeGraph data, and correlated model performance with sociodemographic traits. Findings revealed that there is a systematic bias in models performance toward certain demographic characteristics. Specifically, the models tend to favor large, highly educated, wealthy, young, urban, and non-black-dominated counties. We hypothesize that the mobility data currently used by many predictive models tends to capture less information about older, poorer, non-white, and less educated regions, which in turn negatively impacts the accuracy of the COVID-19 prediction in these regions. Ultimately, this study points to the need of improved data collection and sampling approaches that allow for an accurate representation of the mobility patterns across demographic groups.Comment: 24 pages, 4 figures, 2 Table
    • ā€¦
    corecore