1,205 research outputs found
Recommended from our members
Automatic Generation of Cognitive Theories using Genetic Programming
Cognitive neuroscience is the branch of neuroscience that studies the neural mechanisms underpinning cognition and develops theories explaining them. Within cognitive neuroscience, computational neuroscience focuses on modeling behavior, using theories expressed as computer programs. Up to now, computational theories have been formulated by neuroscientists. In this paper, we present a new approach to theory development in neuroscience: the automatic generation and testing of cognitive theories using genetic programming. Our approach evolves from experimental data cognitive theories that explain āthe mental programā that subjects use to solve a specific task. As an example, we have focused on a typical neuroscience experiment, the delayed-match-to-sample (DMTS) task. The main goal of our approach is to develop a tool that neuroscientists can use to develop better cognitive theories
Recommended from our members
Evaluation of a personalized digital library based on cognitive styles: Adaptivity vs. adaptability
Personalization can be addressed by adaptability and adaptivity, which have different advantages and disadvantages. This study investigates how digital library users react to these two techniques. More specifically, we develop a
personalized digital library to suit the needs of different cognitive styles based on the findings of our previous work (Frias-Martinez, et al., in press). The personalized digital library includes two versions: adaptive version and
adaptable version. The results showed that users not only performed better in the adaptive version, but also they perceived more positively to the adaptive version. In addition, cognitive styles have great effects on usersā responses
to adaptability and adaptivity. These results provide guidance for designers to select suitable techniques to develop personalized digital libraries
Survey of data mining approaches to user modeling for adaptive hypermedia
The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio
Recommended from our members
Behavior-Profile Clustering For False Alert Reduction in Anomaly Detection Sensors
Anomaly Detection (AD) sensors compute behavior profiles to recognize malicious or anomalous activities. The behavior of a host is checked continuously by the AD sensor and an alert is raised when the behavior deviates from its behavior profile. Unfortunately, the majority of AD sensors suffer from high volumes of false alerts either maliciously crafted by the host or originating from insufficient training of the sensor. We present a cluster-based AD sensor that relies on clusters of behavior profiles to identify anomalous behavior. The behavior of a host raises an alert only when a group of host profiles with similar behavior (cluster of behavior profiles) detect the anomaly, rather than just relying on the host's own behavior profile to raise the alert (single-profile AD sensor). A cluster-based AD sensor significantly decreases the volume of false alerts by providing a more robust model of normal behavior based on clusters of behavior profiles. Additionally, we introduce an architecture designed for the deployment of cluster-based AD sensors. The behavior profile of each network host is computed by its closest switch that is also responsible for performing the anomaly detection for each of the hosts in its subnet. By placing the AD sensors at the switch, we eliminate the possibility of hosts crafting malicious alerts. Our experimental results based on wireless behavior profiles from users in the CRAWDAD dataset show that the volume of false alerts generated by cluster-based AD sensors is reduced by at least 50% compared to single-profile AD sensors
Recommended from our members
The role of human factors in stereotyping behavior and perception of digital library users: A robust clustering approach
To deliver effective personalization for digital library users, it is necessary to identify which human factors are most relevant in determining the behavior and perception of these users. This paper examines three key human factors: cognitive styles, levels of expertise and gender differences, and utilizes three individual clustering techniques: k-means, hierarchical clustering and fuzzy clustering to understand user behavior and perception. Moreover, robust clustering, capable of correcting the bias of individual clustering techniques, is used to obtain a deeper understanding. The robust clustering approach produced results that highlighted the relevance of cognitive style for user behavior, i.e., cognitive style dominates and justifies each of the robust clusters created. We also found that perception was mainly determined by the level of expertise of a user. We conclude that robust clustering is an effective technique to analyze user behavior and perception
Modeling human behavior in user-adaptive systems: recent advances using soft computing techniques
Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application
A fairness assessment of mobility-based COVID-19 case prediction models
In light of the outbreak of COVID-19, analyzing and measuring human mobility
has become increasingly important. A wide range of studies have explored
spatiotemporal trends over time, examined associations with other variables,
evaluated non-pharmacologic interventions (NPIs), and predicted or simulated
COVID-19 spread using mobility data. Despite the benefits of publicly available
mobility data, a key question remains unanswered: are models using mobility
data performing equitably across demographic groups? We hypothesize that bias
in the mobility data used to train the predictive models might lead to unfairly
less accurate predictions for certain demographic groups. To test our
hypothesis, we applied two mobility-based COVID infection prediction models at
the county level in the United States using SafeGraph data, and correlated
model performance with sociodemographic traits. Findings revealed that there is
a systematic bias in models performance toward certain demographic
characteristics. Specifically, the models tend to favor large, highly educated,
wealthy, young, urban, and non-black-dominated counties. We hypothesize that
the mobility data currently used by many predictive models tends to capture
less information about older, poorer, non-white, and less educated regions,
which in turn negatively impacts the accuracy of the COVID-19 prediction in
these regions. Ultimately, this study points to the need of improved data
collection and sampling approaches that allow for an accurate representation of
the mobility patterns across demographic groups.Comment: 24 pages, 4 figures, 2 Table
- ā¦