534 research outputs found

    Chiral perturbation theory for partially quenched twisted mass lattice QCD

    Full text link
    Partially quenched Quantum Chromodynamics with Wilson fermions on a lattice is considered in the framework of chiral perturbation theory. Two degenerate quark flavours are associated with a chirally twisted mass term. The pion masses and decay constants are calculated in next-to-leading order including terms linear in the lattice spacing aa.Comment: 7 pages, LaTeX2e, final published versio

    Twisted mass lattice QCD with non-degenerate quark masses

    Full text link
    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a.Comment: 9 pages, LaTeX2e, reference adde

    Twisted mass chiral perturbation theory for 2+1+1 quark flavours

    Full text link
    We present results for the masses of pseudoscalar mesons in twisted mass lattice QCD with a degenerate doublet of u and d quarks and a non-degenerate doublet of s and c quarks in the framework of next-to-leading order chiral perturbation theory, including lattice effects up to O(a^2). The masses depend on the two twist angles for the light and heavy sectors. For maximal twist in both sectors, O(a)-improvement is explicitly exhibited. The mixing of flavour-neutral mesons is also discussed, and results in the literature for the case of degenerate s and c quarks are corrected.Comment: LaTeX2e, 12 pages, corrected typo

    Constraint on the Low Energy Constants of Wilson Chiral Perturbation Theory

    Full text link
    Wilson chiral perturbation theory (WChPT) is the effective field theory describing the long- distance properties of lattice QCD with Wilson or twisted-mass fermions. We consider here WChPT for the theory with two light flavors of Wilson fermions or a single light twisted-mass fermion. Discretization errors introduce three low energy constants (LECs) into partially quenched WChPT at O(a^2), conventionally called W'_6, W'_7 and W'_8 . The phase structure of the theory at non-zero a depends on the sign of the combination 2W'_6 + W'_8, while the spectrum of the lattice Hermitian Wilson-Dirac operator depends on all three constants. It has been argued, based on the positivity of partition functions of fixed topological charge, and on the convergence of graded group integrals that arise in the epsilon-regime of ChPT, that there is a constraint on the LECs arising from the underlying lattice theory. In particular, for W'_6 = W'_7 = 0, the constraint found is W'_8 \le 0. Here we provide an alternative line of argument, based on mass inequalities for the underlying partially quenched theory. We find that W'_8 \le 0, irrespective of the values of W'_6 and W'_7. Our constraint implies that 2W'_6 > |W'_8| if the phase diagram is to be described by the first-order scenario, as recent simulations suggest is the case for some choices of action.Comment: 10 pages, no figure

    O(a^2) cutoff effects in lattice Wilson fermion simulations

    Get PDF
    In this paper we propose to interpret the large discretization artifacts affecting the neutral pion mass in maximally twisted lattice QCD simulations as O(a^2) effects whose magnitude is roughly proportional to the modulus square of the (continuum) matrix element of the pseudoscalar density operator between vacuum and one-pion state. The numerical size of this quantity is determined by the dynamical mechanism of spontaneous chiral symmetry breaking and turns out to be substantially larger than its natural magnitude set by the value of Lambda_QCD.Comment: 38 pages, 1 figure, 2 table

    A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Full text link
    We discuss the renormalisation properties of the complete set of ΔB=2\Delta B = 2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely.Comment: 41 pages, 6 figure

    Mobility edge in lattice QCD

    Full text link
    We determine the location λc\lambda_c of the mobility edge in the spectrum of the hermitian Wilson operator on quenched ensembles. We confirm a theoretical picture of localization proposed for the Aoki phase diagram. When λc>0\lambda_c>0 we also determine some key properties of the localized eigenmodes with eigenvalues ∣λ∣<λc|\lambda|<\lambda_c. Our results lead to simple tests for the validity of simulations with overlap and domain-wall fermions.Comment: revtex, 4 pages, 1 figure, minor change

    Average up/down, strange and charm quark masses with Nf=2 twisted mass lattice QCD

    Full text link
    We present a high precision lattice calculation of the average up/down, strange and charm quark masses performed with Nf=2 twisted mass Wilson fermions. The analysis includes data at four values of the lattice spacing and pion masses as low as ~270 MeV, allowing for accurate continuum limit and chiral extrapolation. The strange and charm masses are extracted by using several methods, based on different observables: the kaon and the eta_s meson for the strange quark and the D, D_s and eta_c mesons for the charm. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses in the MSbar scheme read: m_ud(2 GeV)= 3.6(2) MeV, m_s(2 GeV)=95(6) MeV and m_c(m_c)=1.28(4) GeV. We also obtain the ratios m_s/m_ud=27.3(9) and m_c/m_s=12.0(3).Comment: 20 pages, 5 figures. Typos corrected in eqs. (15)-(17). Version published in Phys. Rev.

    Quark masses with Nf=2 twisted mass lattice QCD

    Full text link
    We present the results of the recent high precision lattice calculation of the average up/down, strange and charm quark masses performed by ETMC with Nf=2 twisted mass Wilson fermions. The analysis includes data at four values of the lattice spacing and pion masses as low as ~270 MeV, allowing for accurate continuum limit and chiral extrapolation. The strange and charm masses are extracted by using several methods, based on different observables: the kaon and the eta_s meson for the strange quark and the D, D_s and eta_c mesons for the charm. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses in the MSbar scheme read: m_ud(2 GeV)= 3.6(2) MeV, m_s(2 GeV)=95(6) MeV and m_c(m_c)=1.28(4) GeV. We have also obtained the ratios m_s/m_ud=27.3(9) and m_c/m_s=12.0(3). Moreover, we provide the updated result for the bottom quark mass, m_b(m_b)=4.3(2) GeV, obtained using the method presented in 0909.3187 [hep-lat].Comment: 7 pages, 7 figures, talk given at the XXVIII International Symposium on Lattice Field Theory (Lattice 2010), June 14-19 2010, Villasimius, Ital
    • …
    corecore