310 research outputs found
Semiclassical interferences and catastrophes in the ionization of Rydberg atoms by half-cycle pulses
A multi-dimensional semiclassical description of excitation of a Rydberg
electron by half-cycle pulses is developed and applied to the study of energy-
and angle-resolved ionization spectra. Characteristic novel phenomena
observable in these spectra such as interference oscillations and semiclassical
glory and rainbow scattering are discussed and related to the underlying
classical dynamics of the Rydberg electron. Modifications to the predictions of
the impulse approximation are examined that arise due to finite pulse
durations
Probing R-violating top quark decays at the NLC
We examine the possibility of observing exotic top quark decays via
-Parity violating SUSY interactions in collisions at \sqrt{s = 500
GeV. We present cross-sections for production followed by the
subsequent decay of either the or via the -Parity
violating interaction while the other undergoes the SM decay. We discuss
kinematic cuts that allow the exotic SUSY decays to be detected over standard
model backgrounds. Discovery limits for -Parity violating couplings in the
top sector are presented assuming an integrated luminosity of .Comment: 9 LaTeX pages, 3 PS figure
Phase Transitions of Hard Disks in External Periodic Potentials: A Monte Carlo Study
The nature of freezing and melting transitions for a system of hard disks in
a spatially periodic external potential is studied using extensive Monte Carlo
simulations. Detailed finite size scaling analysis of various thermodynamic
quantities like the order parameter, its cumulants etc. are used to map the
phase diagram of the system for various values of the density and the amplitude
of the external potential. We find clear indication of a re-entrant liquid
phase over a significant region of the parameter space. Our simulations
therefore show that the system of hard disks behaves in a fashion similar to
charge stabilized colloids which are known to undergo an initial freezing,
followed by a re-melting transition as the amplitude of the imposed, modulating
field produced by crossed laser beams is steadily increased. Detailed analysis
of our data shows several features consistent with a recent dislocation
unbinding theory of laser induced melting.Comment: 36 pages, 16 figure
Renormalization group and nonequilibrium action in stochastic field theory
We investigate the renormalization group approach to nonequilibrium field
theory. We show that it is possible to derive nontrivial renormalization group
flow from iterative coarse graining of a closed-time-path action. This
renormalization group is different from the usual in quantum field theory
textbooks, in that it describes nontrivial noise and dissipation. We work out a
specific example where the variation of the closed-time-path action leads to
the so-called Kardar-Parisi-Zhang equation, and show that the renormalization
group obtained by coarse graining this action, agrees with the dynamical
renormalization group derived by directly coarse graining the equations of
motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference
adde
Roughening Transition in a Moving Contact Line
The dynamics of the deformations of a moving contact line on a disordered
substrate is formulated, taking into account both local and hydrodynamic
dissipation mechanisms. It is shown that both the coating transition in contact
lines receding at relatively high velocities, and the pinning transition for
slowly moving contact lines, can be understood in a unified framework as
roughening transitions in the contact line. We propose a phase diagram for the
system in which the phase boundaries corresponding to the coating transition
and the pinning transition meet at a junction point, and suggest that for
sufficiently strong disorder a receding contact line will leave a
Landau--Levich film immediately after depinning. This effect may be relevant to
a recent experimental observation in a liquid Helium contact line on a Cesium
substrate [C. Guthmann, R. Gombrowicz, V. Repain, and E. Rolley, Phys. Rev.
Lett. {\bf 80}, 2865 (1998)].Comment: 16 pages, 6 encapsulated figure
Nature of the quantum phase transitions in the two-dimensional hardcore boson model
We use two Quantum Monte Carlo algorithms to map out the phase diagram of the
two-dimensional hardcore boson Hubbard model with near () and next near
() neighbor repulsion. At half filling we find three phases: Superfluid
(SF), checkerboard solid and striped solid depending on the relative values of
, and the kinetic energy. Doping away from half filling, the
checkerboard solid undergoes phase separation: The superfluid and solid phases
co-exist but not as a single thermodynamic phase. As a function of doping, the
transition from the checkerboard solid is therefore first order. In contrast,
doping the striped solid away from half filling instead produces a striped
supersolid phase: Co-existence of density order with superfluidity as a single
phase. One surprising result is that the entire line of transitions between the
SF and checkerboard solid phases at half filling appears to exhibit dynamical
O(3) symmetry restoration. The transitions appear to be in the same
universality class as the special Heisenberg point even though this symmetry is
explicitly broken by the interaction.Comment: 10 pages, 14 eps figures, include
Coset Space Dimensional Reduction and Wilson Flux Breaking of Ten-Dimensional N=1, E(8) Gauge Theory
We consider a N=1 supersymmetric E(8) gauge theory, defined in ten dimensions
and we determine all four-dimensional gauge theories resulting from the
generalized dimensional reduction a la Forgacs-Manton over coset spaces,
followed by a subsequent application of the Wilson flux spontaneous symmetry
breaking mechanism. Our investigation is constrained only by the requirements
that (i) the dimensional reduction leads to the potentially phenomenologically
interesting, anomaly free, four-dimensional E(6), SO(10) and SU(5) GUTs and
(ii) the Wilson flux mechanism makes use only of the freely acting discrete
symmetries of all possible six-dimensional coset spaces.Comment: 45 pages, 2 figures, 10 tables, uses xy.sty, longtable.sty,
ltxtable.sty, (a shorter version will be published in Eur. Phys. J. C
Genetic Relationships of Crown Rust Resistance, Grain Yield, Test Weight, and Seed Weight in Oat
Integrating selection for agronomic performance and quantitative resistance to crown rust, caused by Puccinia coronata Corda var. avenae W.P. Fraser & Ledingham, in oat (Avena sativa L.) requires an understanding of their genetic relationships. This study was conducted to investigate the genetic relationships of crown rust resistance, grain yield, test weight, and seed weight under both inoculated and fungicide-treated conditions. A Design II mating was performed between 10 oat lines with putative partial resistance to crown rust and nine lines with superior grain yield and grain quality potential. Progenies from this mating were evaluated in both crown rust-inoculated and fungicide-treated plots in four Iowa environments to estimate genetic effects and phenotypic correlations between crown rust resistance and grain yield, seed weight, and test weight under either infection or fungicide-treated conditions. Lines from a random-mated population derived from the same parents were evaluated in three Iowa environments to estimate heritabilities of, and genetic correlations between, these traits. Resistance to crown rust, as measured by area under the disease progress curve (AUDPC), was highly heritable (H = 0.89 on an entry-mean basis), and was favorably correlated with grain yield, seed weight, and test weight measured in crown rust-inoculated plots. AUDPC was unfavorably correlated or uncorrelated with grain yield, test weight, and seed weight measured in fungicide-treated plots. To improve simultaneously crown rust resistance, grain yield, and seed weight under both lower and higher levels of crown rust infection, an optimum selection index can be developed with the genetic parameters estimated in this stud
Measurement of the partial widths of the Z into up- and down-type quarks
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma
decays were selected by tagging hadronic final states with isolated photon
candidates in the electromagnetic calorimeter. Combining the measured rates of
Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the
simultaneous determination of the widths of the Z into up- and down-type
quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18}
MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with
the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
- …