682 research outputs found

    Evaluation of Disability Employment Policy Demonstration Programs

    Get PDF
    [Excerpt] Since 2001, the Office of Disability Employment Policy (ODEP) has awarded more than 65millioningrants,contracts,andcooperativeagreements.Ofthis,morethan65 million in grants, contracts, and cooperative agreements. Of this, more than 38 million has been awarded to projects under the ODEP Demonstration Program, with about 2 percent directed toward an independent evaluation. The ODEP Demonstration Program consists of a variety of initiatives targeted at both adults and youth with disabilities. All demonstration projects funded under these initiatives are expected to implement and evaluate methods for building the capacity of the workforce development system to better serve people with disabilities. ODEP contracted with Westat, a private research company, to conduct an independent evaluation of its demonstration program. The purpose of the independent evaluation is to provide ODEP with data and information about system change that can be used to assist policy development, decisions, and recommendations, as well as track progress in meeting ODEP’s goals under the Government Performance and Results Act (GPRA). The independent evaluation has three objectives: 1. To provide ODEP with reliable and valid indicators of program effectiveness; 2. To determine the extent to which each program priority area is effective in building workforce development system capacity; and 3. To document local, regional, and/or state systems change that supports program effectiveness. This paper summarizes the issues and accomplishments identified by the evaluation to date in the context of these three objectives

    Employer Involvement in Office of Disability Employment (ODEP) Demonstration Programs

    Get PDF
    [Excerpt] As part of the independent evaluation of ODEP’s demonstration program being conducted by Westat, the Office of Disability Employment Policy (ODEP) asked Westat to provide in-depth analysis of three issues that were identified at site visits and in Quarterly Reports during Phase II of the evaluation. This report provides in-depth analysis on the first issue—employer involvement in adult demonstration programs

    Multivariate Regression Analysis of Gravitational Waves from Rotating Core Collapse

    Get PDF
    We present a new multivariate regression model for analysis and parameter estimation of gravitational waves observed from well but not perfectly modeled sources such as core-collapse supernovae. Our approach is based on a principal component decomposition of simulated waveform catalogs. Instead of reconstructing waveforms by direct linear combination of physically meaningless principal components, we solve via least squares for the relationship that encodes the connection between chosen physical parameters and the principal component basis. Although our approach is linear, the waveforms' parameter dependence may be non-linear. For the case of gravitational waves from rotating core collapse, we show, using statistical hypothesis testing, that our method is capable of identifying the most important physical parameters that govern waveform morphology in the presence of simulated detector noise. We also demonstrate our method's ability to predict waveforms from a principal component basis given a set of physical progenitor parameters

    Machine Translation for Accessible Multi-Language Text Analysis

    Full text link
    English is the international standard of social research, but scholars are increasingly conscious of their responsibility to meet the need for scholarly insight into communication processes globally. This tension is as true in computational methods as any other area, with revolutionary advances in the tools for English language texts leaving most other languages far behind. In this paper, we aim to leverage those very advances to demonstrate that multi-language analysis is currently accessible to all computational scholars. We show that English-trained measures computed after translation to English have adequate-to-excellent accuracy compared to source-language measures computed on original texts. We show this for three major analytics -- sentiment analysis, topic analysis, and word embeddings -- over 16 languages, including Spanish, Chinese, Hindi, and Arabic. We validate this claim by comparing predictions on original language tweets and their backtranslations: double translations from their source language to English and back to the source language. Overall, our results suggest that Google Translate, a simple and widely accessible tool, is effective in preserving semantic content across languages and methods. Modern machine translation can thus help computational scholars make more inclusive and general claims about human communication.Comment: 5000 words, 6 figure

    Towards laser driven table-top coherent diffractive X-ray microscopy of cultured hippocampal neurons

    No full text
    Neurodegenerative diseases such as Alzheimer’s disease have a huge impact on the world population; over 44 million people worldwide and 850,000 in the UK were recorded as living with dementia in 2013. There are numerous theories attempting to explain the cause of Alzheimer’s disease. Histology from the brains of people who had Alzheimer’s disease shows neurofibilliary tangles and amyloid plaques. Their role in the mechanism of disease is not yet completely understood but we envisage that novel imaging techniques may aid understanding. We present initial data collected using confocal fluorescence microscopy and hard X-ray scanning diffractive microscopy (ptychography) on cultured neuron samples plus high resolution large field of view imaging of test samples from a soft X-ray lab based high harmonic generation (HHG) source

    Intranasal Treatment of Central Nervous System Dysfunction in Humans

    Get PDF
    One of the most challenging problems facing modern medicine is how to deliver a given drug to a specific target at the exclusion of other regions. For example, a variety of compounds have beneficial effects within the central nervous system (CNS), but unwanted side effects in the periphery. For such compounds, traditional oral or intravenous drug delivery fails to provide benefit without cost. However, intranasal delivery is emerging as a noninvasive option for delivering drugs to the CNS with minimal peripheral exposure. Additionally, this method facilitates the delivery of large and/or charged therapeutics, which fail to effectively cross the blood-brain barrier (BBB). Thus, for a variety of growth factors, hormones, neuropeptides and therapeutics including insulin, oxytocin, orexin, and even stem cells, intranasal delivery is emerging as an efficient method of administration, and represents a promising therapeutic strategy for the treatment of diseases with CNS involvement, such as obesity, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, depression, anxiety, autism spectrum disorders, seizures, drug addiction, eating disorders, and stroke

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    ‘Dominant ethnicity’ and the ‘ethnic-civic’ dichotomy in the work of A. D. Smith

    Get PDF
    This article considers the way in which the work of Anthony Smith has helped to structure debates surrounding the role of ethnicity in present-day nations. Two major lines of enquiry are evident here. First, the contemporary role of dominant ethnic groups within 'their' nations and second, the interplay between ethnic and civic elements in nationalist argument. The two processes are related, but maintain elements of distinctiveness. Smith's major contribution to the dominant ethnicity debate has been to disembed ethnicity from the ideologically-charged and/or anglo-centric discourse of ethnic relations and to place it in historical context, thereby opening up space for dominant group ethnicity to be considered as a distinct phenomenon. This said, Smith's work does not adequately account for the vicissitudes of dominant ethnicity in the contemporary West. Building on the classical works of Hans Kohn and Friedrich Meinecke, Anthony Smith has also made a seminal contribution to the debate on civic and ethnic forms of national identity and nationalist ideology. As well as freeing this debate from the strong normative overtones which it has often carried, he has continued to insist that the terms civic and ethnic should be treated as an ideal-typical distinction rather than a scheme of classification

    Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Science 358 (2017): 101-105, doi:10.1126/science.aan2874.In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.This research has been supported by grants from the Department of Energy - DE-SC0010740; DOE DE-SC0016590: and the National Science Foundation - DEB 1237491 (LTER) ; DEB 1456528 (LTREB)
    corecore