6 research outputs found

    Long-term implantable silicon carbide neural interface device using the electrical field effect

    Get PDF
    Field effect devices, such as capacitors and field effect transistors, are used to interact with neurons. Cubic silicon carbide is biocompatible with the neuronal environment and has the chemical and physical resilience required to withstand the body environment and does not produce toxic byproducts. It is used as a basis for generating a biocompatible semiconductor field effect device that interacts with the brain for long periods of time. The device signals capacitively and receives signals using field effect transistors. These signals can be used to drive very complicated systems such as multiple degree of freedom limb prosthetics, sensory replacements, and may additionally assist in therapies for diseases like Parkinson\u27s disease

    Graphene electrodes on a planar cubic silicon carbide (3C-SiC) long term implantable neuronal prosthetic device

    Get PDF
    Graphene, can be used to make an implantable neuronal prosthetic which can be indefinitely implanted in vivo. Graphene electrodes are placed on a 3C—SiC shank and electrical insulation is provided by conformal insulating SiC. These materials are not only chemically resilient, physically durable, and have excellent electrical properties, but have demonstrated a very high degree of biocompatibility. Graphene also has a large specific capacitance in electrolytic solutions as well as a large surface area which reduces the chances for irreversible Faradaic reactions. Graphene can easily be constructed on SiC by the evaporation of Si from the surface of that material allowing for mechanically robust epitaxial graphene layers that can be fashioned into electrodes using standard lithography and etching methods

    Cubic silicon carbide implantable neural prosthetic

    Get PDF
    An implantable neuronal prosthetic and method of manufacture thereof includes at least one elongated electrode shank adapted for arrangement in the brain having at least one electrode contact disposed on its surface and arranged to electrically couple with said brain. The at least one elongated electrode shank is formed form a single crystal cubic silicon carbide. An insulation layer of amorphous, polycrystalline, or single crystal silicon carbide is disposed over the elongated electrode shank; the insulation layer of amorphous, polycrystalline, or single crystal silicon carbide is removed from the at least one electrode contact. Signal control electronics are attached to the at least one elongated electrode shank and are in electrical communication with the at least one electrode contact. In an embodiment, a plurality of the at least one elongated electrode shanks are arranged into a matrix

    System and method for non-invasive blood glucose monitoring

    No full text
    A system and method for continuous glucose monitoring (CGM) of blood in a blood vessel of a patient using a non-invasive sensor composed of a patch antenna operating in the Industrial, Scientific and Medical (ISM) Radio band (5.725 GHz-5.875 GHz). The device determines the blood glucose concentration of the blood in the blood vessel based on the measured shift of the resonant frequency of the non-invasive antenna patch sensor. A radio frequency (RF) synthesizer is used to drive the patch antenna with a fraction of its output coupled to both the antenna and receiver through a directional coupler. In this approach both the transmitted (FWD) and received (REV) power are processed, by demodulating logarithmic amplifiers, which convert the RF signals to corresponding voltages for downstream processing. The resulting voltages are then fed into a microcontroller and the measured shift in resonant frequency is converted to a real-time glucose concentration

    System and method for non-invasive blood glucose monitoring

    No full text
    A system and method for continuous glucose monitoring (CGM) of blood in a blood vessel of a patient using a non-invasive sensor composed of a patch antenna operating in the Industrial, Scientific and Medical (ISM) Radio band (5.725 GHz-5.875 GHz). The device determines the blood glucose concentration of the blood in the blood vessel based on the measured shift of the resonant frequency of the non-invasive antenna patch sensor. A radio frequency (RF) synthesizer is used to drive the patch antenna with a fraction of its output coupled to both the antenna and receiver through a directional coupler. In this approach both the transmitted (FWD) and received (REV) power are processed, by demodulating logarithmic amplifiers, which convert the RF signals to corresponding voltages for downstream processing. The resulting voltages are then fed into a microcontroller and the measured shift in resonant frequency is converted to a real-time glucose concentration

    Continuous glucose monitoring based on remote sensing of variations of parameters of a SiC implanted antenna

    Get PDF
    A passive sensing continuous glucose monitoring system and method of use thereof. The system includes a passive antenna formed of biocompatible silicon carbide (SiC), modeled to a desired frequency, which is permanently implanted subcutaneously. The system further includes an external-to-the-body transmitting antenna to detect changes in the blood glucose level by sending a radio signal at the frequency of the implanted passive antenna into the body. This signal is received and reflected by the passive antenna, and the reflected signal is then received at an external-to-the-body receiving antenna. Changes in the glucose level lead to modifications in the signal and can be used to determine the blood glucose level externally
    corecore