1,212 research outputs found

    Three fermions with six single particle states can be entangled in two inequivalent ways

    Full text link
    Using a generalization of Cayley's hyperdeterminant as a new measure of tripartite fermionic entanglement we obtain the SLOCC classification of three-fermion systems with six single particle states. A special subclass of such three-fermion systems is shown to have the same properties as the well-known three-qubit ones. Our results can be presented in a unified way using Freudenthal triple systems based on cubic Jordan algebras. For systems with an arbitrary number of fermions and single particle states we propose the Pl\"ucker relations as a sufficient and necessary condition of separability.Comment: 23 pages LATE

    Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

    Full text link
    We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra "dilatonic" coordinate, whose rotation, Lorentz and conformal groups are SO(d-1), SO(d-1,1) XSO(1,1) and SO(d,2)XSO(2,1), respectively. The generalized spacetimes described by simple Jordan algebras of degree three correspond to extensions of Minkowskian spacetimes in the critical dimensions (d=3,4,6,10) by a dilatonic and extra (2,4,8,16) commuting spinorial coordinates, respectively. The Freudenthal triple systems defined over these Jordan algebras describe conformally covariant phase spaces. Following hep-th/0008063, we give a unified geometric realization of the quasiconformal groups that act on their conformal phase spaces extended by an extra "cocycle" coordinate. For the generic Jordan family the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are given. The minimal unitary representations of the quasiconformal groups F_4(4), E_6(2), E_7(-5) and E_8(-24) of the simple Jordan family were given in our earlier work hep-th/0409272.Comment: A typo in equation (37) corrected and missing titles of some references added. Version to be published in JHEP. 38 pages, latex fil

    The emergence of meaningful geometry

    Get PDF
    publishedVersio

    A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

    Get PDF
    Let G/KG/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of GG sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of GG. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a quaternion-K\"{a}hler structure

    Priemeinden en einden : Voordracht topologische dag, 11.10.1948

    Get PDF

    Magic Supergravities, N= 8 and Black Hole Composites

    Get PDF
    We present explicit U-duality invariants for the R, C, Q, O$ (real, complex, quaternionic and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4 theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio

    Octonions, E6, and Particle Physics

    Full text link
    In 1934, Jordan et al. gave a necessary algebraic condition, the Jordan identity, for a sensible theory of quantum mechanics. All but one of the algebras that satisfy this condition can be described by Hermitian matrices over the complexes or quaternions. The remaining, exceptional Jordan algebra can be described by 3x3 Hermitian matrices over the octonions. We first review properties of the octonions and the exceptional Jordan algebra, including our previous work on the octonionic Jordan eigenvalue problem. We then examine a particular real, noncompact form of the Lie group E6, which preserves determinants in the exceptional Jordan algebra. Finally, we describe a possible symmetry-breaking scenario within E6: first choose one of the octonionic directions to be special, then choose one of the 2x2 submatrices inside the 3x3 matrices to be special. Making only these two choices, we are able to describe many properties of leptons in a natural way. We further speculate on the ways in which quarks might be similarly encoded.Comment: 13 pages; 6 figures; TonyFest plenary talk (York 2008

    First Light of Engineered Diffusers at the Nordic Optical Telescope Reveal Time Variability in the Optical Eclipse Depth of WASP-12b

    Full text link
    We present the characterization of two engineered diffusers mounted on the 2.5 meter Nordic Optical Telescope, located at Roque de Los Muchachos, Spain. To assess the reliability and the efficiency of the diffusers, we carried out several test observations of two photometric standard stars, along with observations of one primary transit observation of TrES-3b in the red (R-band), one of CoRoT-1b in the blue (B-band), and three secondary eclipses of WASP-12b in V-band. The achieved photometric precision is in all cases within the sub-millimagnitude level for exposures between 25 and 180 seconds. Along a detailed analysis of the functionality of the diffusers, we add a new transit depth measurement in the blue (B-band) to the already observed transmission spectrum of CoRoT-1b, disfavouring a Rayleigh slope. We also report variability of the eclipse depth of WASP-12b in the V-band. For the WASP-12b secondary eclipses, we observe a secondary-depth deviation of about 5-sigma, and a difference of 6-sigma and 2.5-sigma when compared to the values reported by other authors in similar wavelength range determined from Hubble Space Telescope data. We further speculate about the potential physical processes or causes responsible for this observed variabilityComment: 11 pages, 9 figure

    Small Orbits

    Full text link
    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to sections III. C. 1. and III. F.

    Diagnosing students' difficulties in learning mathematics

    Get PDF
    This study considers the results of a diagnostic test of student difficulty and contrasts the difference in performance between the lower attaining quartile and the higher quartile. It illustrates a difference in qualitative thinking between those who succeed and those who fail in mathematics, illustrating a theory that those who fail are performing a more difficult type of mathematics (coordinating procedures) than those who succeed (manipulating concepts). Students who have to coordinate or reverse processes in time will encounter far greater difficulty than those who can manipulate symbols in a flexible way. The consequences of such a dichotomy and implications for remediation are then considered
    • …
    corecore