83 research outputs found

    Comprehensive Identification of RNA-Binding Domains in Human Cells

    Get PDF
    Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Profiling of diet-induced neuropeptide changes in rat brain by quantitative mass spectrometry.

    No full text
    Neuropeptides are intercellular signal transmitters that play key roles in modulation of many behavioral and physiological processes. Neuropeptide signaling in several nuclei in the hypothalamus contributes to the control of food intake. Additionally, food intake regulation involves neuropeptide signaling in the reward circuitry in the striatum. Here, we analyze neuropeptides extracted from hypothalamus and striatum from rats in four differentially treated dietary groups including a high-fat/high-sucrose diet, mimicking diet-induced obesity. We employ high-resolution tandem mass spectrometry using higher-energy collision dissociation and electron transfer dissociation fragmentation for sensitive identification of more than 1700 unique endogenous peptides, including virtually all key neuropeptides known to be involved in food intake regulation. Label-free quantification of differential neuropeptide expression revealed comparable upregulation of orexigenic and anorexigenic neuropeptides in rats that were fed on a high-fat/high-sucrose diet

    Characterization of electron transfer dissociation in the Orbitrap Velos HCD cell.

    No full text
    Electron transfer dissociation (ETD) is commonly employed in ion traps utilizing rf fields that facilitate efficient electron transfer reactions. Here, we explore performing ETD in the HCD collision cell on an Orbitrap Velos instrument by applying a static DC gradient axially to the rods. This gradient enables simultaneous three dimensional, charge sign independent, trapping of cations and anions, initiating electron transfer reactions in the center of the HCD cell where oppositely charged ions clouds overlap. Here, we evaluate this mode of operation for a number of tryptic peptide populations and the top-down sequence analysis of ubiquitin. Our preliminary data show that performing ETD in the HCD cell provides similar fragmentation as ion trap-ETD but requires further optimization to match performance of ion trap-ETD

    Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD).

    Get PDF
    We recently introduced a novel scheme combining electron-transfer and higher-energy collision dissociation (termed EThcD), for improved peptide ion fragmentation and identification. We reasoned that phosphosite localization, one of the major hurdles in high-throughput phosphoproteomics, could also highly benefit from the generation of such EThcD spectra. Here, we systematically assessed the impact on phosphosite localization utilizing EThcD in comparison to methods employing either ETD or HCD, respectively, using a defined synthetic phosphopeptide mixture and also using a larger data set of Ti(4+)-IMAC enriched phosphopeptides from a tryptic human cell line digest. In combination with a modified version of phosphoRS, we observed that in the majority of cases EThcD generated richer and more confidently identified spectra, resulting in superior phosphosite localization scores. Our data demonstrates the distinctive potential of EThcD for PTM localization, also beyond protein phosphorylation

    Benchmarking stable isotope labeling based quantitative proteomics.

    No full text
    Several quantitative mass spectrometry based technologies have recently evolved to interrogate the complexity, interconnectivity and dynamic nature of proteomes. Currently, the most popular methods use either metabolic or chemical isotope labeling with MS based quantification or chemical labeling using isobaric tags with MS/MS based quantification. Here, we assess the performance of three of the most popular approaches through systematic independent large scale quantitative proteomics experiments, comparing SILAC, dimethyl and TMT labeling strategies. Although all three methods have their strengths and weaknesses, our data indicate that all three can reach a similar depth in number of identified proteins using a classical (MS2 based) shotgun approach. TMT quantification using only MS2 is heavily affected by co-isolation leading to compromised precision and accuracy. This issue may be partly resolved by using an MS3 based acquisition; however, at the cost of a significant reduction in number of proteins quantified. Interestingly, SILAC and chemical labeling with MS based quantification produce almost indistinguishable results, independent of which database search algorithm used

    Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos.

    No full text
    Over the past decade peptide sequencing by collision induced dissociation (CID) has become the method of choice in mass spectrometry-based proteomics. The development of alternative fragmentation techniques such as electron transfer dissociation (ETD) has extended the possibilities within tandem mass spectrometry. Recent advances in instrumentation allow peptide fragment ions to be detected with high speed and sensitivity (e.g., in a 2D or 3D ion trap) or at high resolution and high mass accuracy (e.g., an Orbitrap or a ToF). Here, we describe a comprehensive experimental comparison of using ETD, ion-trap CID, and beam type CID (HCD) in combination with either linear ion trap or Orbitrap readout for the large-scale analysis of tryptic peptides. We investigate which combination of fragmentation technique and mass analyzer provides the best performance for the analysis of distinct peptide populations such as N-acetylated, phosphorylated, and tryptic peptides with up to two missed cleavages. We found that HCD provides more peptide identifications than CID and ETD for doubly charged peptides. In terms of Mascot score, ETD FT outperforms the other techniques for peptides with charge states higher than 2. Our data shows that there is a trade-off between spectral quality and speed when using the Orbitrap for fragment ion detection. We conclude that a decision-tree regulated combination of higher-energy collisional dissociation (HCD) and ETD can improve the average Mascot score

    Global changes of the RNA-bound proteome during thematernal-to-zygotic transition in Drosophila

    No full text
    The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant DrosophilaRBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of Drosophiladevelopment

    Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry.

    No full text
    Increasing peptide sequence coverage by tandem mass spectrometry improves confidence in database search-based peptide identification and facilitates mapping of post-translational modifications and de novo sequencing. Inducing 2-fold fragmentation by combining electron-transfer and higher-energy collision dissociation (EThcD) generates dual fragment ion series and facilitates extensive peptide backbone fragmentation. After an initial electron-transfer dissociation step, all ions including the unreacted precursor ions are subjected to collision induced dissociation which yields b/y- and c/z-type fragment ions in a single spectrum. This new fragmentation scheme provides richer spectra and substantially increases the peptide sequence coverage and confidence in peptide identification

    Untersuchungen zum kritischen, korrosionsausloesenden Chloridgehalt Abschlussbericht

    Get PDF
    Also published as: IRB-Forschungsbericht, no. T 2689Available from TIB Hannover: RO 473(333) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman
    • …
    corecore