14 research outputs found
Recommended from our members
Development of affinity technology for isolating individual human chromosomes by third strand binding
The overall goal was to explore whether nucleic acid third strands could be used to bind with very high specificity to specific targets within whole genomes. Towards this end conditions had to be found to keep erroneous binding to an absolute minimum. The goal to use third strands (linked to magnetic beads) to ''capture'' large particles such as plasmids, cosmids, and whole chromosomes from complex mixtures was partially met; their use to serve as cytogenetic probes of metaphase chromosomes and to deliver reactive reagents to unique target sites on chromosomes in vivo for the purpose of mutagenizing specific base pairs was fully met; and their use as cytogenetic probes of chromosomal DNA in sections of formalin-fixed, paraffin-embedded tissue has been met since the DOE support was terminated
Recommended from our members
Self-catalytic DNA Depurination Underlies Human β-Globin Gene Mutations at Codon 6 That Cause Anemias and Thalassemias
The human beta-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and beta-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby
conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to beta-globin variants underlying phenotypic diversity and disease
Are stop codons recognized by base triplets in the large ribosomal RNA subunit?
The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon·tRNA anticodon interaction should also extend to stop codon·Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously
Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence
Three identical deoxyoligonucleotide third strands with a 3′-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell β-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites. The specificity of photoadduct formation at the desired mutant T residue site was greatly improved by shortening the psoralen linker. In particular, using the N-4 linker, psoralen interaction with the residues of the non-coding duplex strand was essentially eliminated, while modification of the Sickle Cell mutant T residue was maximized. At the same time, the proportion of crosslink formation at the mutant T residue upon UV irradiation was much greater for the N-4 linker. The photoproducts formed with the wild-type target were fully consistent with its single base pair difference. The third strand with the N-4 linker was also shown to bind to a supercoiled plasmid containing the Sickle Cell mutation site, giving photoproduct yields comparable with those observed in the linear mutant target