16 research outputs found

    Real-time non-perturbative dynamics of jet production: quantum entanglement and vacuum modification

    Full text link
    The production of jets should allow testing the real-time response of the QCD vacuum disturbed by the propagation of high-momentum color charges. Addressing this problem theoretically requires a real-time, non-perturbative method. It is well known that the Schwinger model [QED in (1+1)(1+1) dimensions] shares many common properties with QCD, including confinement, chiral symmetry breaking, and the existence of vacuum fermion condensate. As a step in developing such an approach, we report here on fully quantum simulations of a massive Schwinger model coupled to external sources representing quark and antiquark jets as produced in e+e−e^+e^- annihilation. We study, for the first time, the modification of the vacuum chiral condensate by the propagating jets and the quantum entanglement between the fragmenting jets. Our results indicate strong entanglement between the fragmentation products of the two jets at rapidity separations Δη≤2\Delta \eta \leq 2, which can potentially exist also in QCD and can be studied in experiments.Comment: 5 pages + supplementary materials, 10 figures; final versio

    Chiral heat wave and mixed waves in kinetic theory

    No full text

    Chiral heat wave in cold Fermi liquid and modified zero sound

    No full text
    corecore