3,959 research outputs found
Boundary Friction on Molecular Lubricants: Rolling Mode?
A theoretical model is proposed for low temperature friction between two
smooth rigid solid surfaces separated by lubricant molecules, admitting their
deformations and rotations. Appearance of different modes of energy dissipation
(by ''rocking'' or ''rolling'' of lubricants) at slow relative displacement of
the surfaces is shown to be accompanied by the stick-and-slip features and
reveals a non-monotonic (mean) friction force {\it vs} external loadComment: revtex4, 4 pages, 5 figure
Z-graded weak modules and regularity
It is proved that if any Z-graded weak module for vertex operator algebra V
is completely reducible, then V is rational and C_2-cofinite. That is, V is
regular. This gives a natural characterization of regular vertex operator
algebras.Comment: 9 page
Hard thermal effective action in QCD through the thermal operator
Through the application of the thermal operator to the zero temperature
retarded Green's functions, we derive in a simple way the well known hard
thermal effective action in QCD. By relating these functions to forward
scattering amplitudes for on-shell particles, this derivation also clarifies
the origin of important properties of the hard thermal effective action, such
as the manifest Lorentz and gauge invariance of its integrand.Comment: 6 pages, contribution of the quarks to the effective action included
and one reference added, version to be published in Phys. Rev.
Non-linear electromagnetic interactions in thermal QED
We examine the behavior of the non-linear interactions between
electromagnetic fields at high temperature. It is shown that, in general, the
log(T) dependence on the temperature of the Green functions is simply related
to their UV behavior at zero-temperature. We argue that the effective action
describing the nonlinear thermal electromagnetic interactions has a finite
limit as T tends to infinity. This thermal action approaches, in the long
wavelength limit, the negative of the corresponding zero-temperature action.Comment: 7 pages, IFUSP/P-111
Forward Flux Sampling-type schemes for simulating rare events: Efficiency analysis
We analyse the efficiency of several simulation methods which we have
recently proposed for calculating rate constants for rare events in stochastic
dynamical systems, in or out of equilibrium. We derive analytical expressions
for the computational cost of using these methods, and for the statistical
error in the final estimate of the rate constant, for a given computational
cost. These expressions can be used to determine which method to use for a
given problem, to optimize the choice of parameters, and to evaluate the
significance of the results obtained. We apply the expressions to the
two-dimensional non-equilibrium rare event problem proposed by Maier and Stein.
For this problem, our analysis gives accurate quantitative predictions for the
computational efficiency of the three methods.Comment: 19 pages, 13 figure
Free Boson Representation of
A representation of the quantum affine algebra of an
arbitrary level is constructed in the Fock module of eight boson fields.
This realization reduces the Wakimoto representation in the
limit. The analogues of the screening currents are also obtained. They commute
with the action of modulo total differences of some
fields.Comment: 12 pages, LaTeX, RIMS-920, YITP/K-101
Dynamical transitions in incommensurate systems
In the dynamics of the undamped Frenkel-Kontorova model with kinetic terms,
we find a transition between two regimes, a floating incommensurate and a
pinned incommensurate phase. This behavior is compared to the static version of
the model. A remarkable difference is that, while in the static case the two
regimes are separated by a single transition (the Aubry transition), in the
dynamical case the transition is characterized by a critical region, in which
different phenomena take place at different times. In this paper, the
generalized angular momentum we have previously introduced, and the dynamical
modulation function are used to begin a characterization of this critical
region. We further elucidate the relation between these two quantities, and
present preliminary results about the order of the dynamical transition.Comment: 7 pages, 6 figures, file 'epl.cls' necessary for compilation
provided; subm. to Europhysics Letter
The thickness of a liquid layer on the free surface of ice as obtained from computer simulation
Molecular dynamic simulations were performed for ice Ih with a free surface
by using four water models, SPC/E, TIP4P, TIP4P/Ice and TIP4P/2005. The
behavior of the basal plane, the primary prismatic plane and of the secondary
prismatic plane when exposed to vacuum was analyzed. We observe the formation
of a thin liquid layer at the ice surface at temperatures below the melting
point for all models and the three planes considered. For a given plane it was
found that the thickness of a liquid layer was similar for different water
models, when the comparison is made at the same undercooling with respect to
the melting point of the model. The liquid layer thickness is found to increase
with temperature. For a fixed temperature it was found that the thickness of
the liquid layer decreases in the following order: the basal plane, the primary
prismatic plane, and the secondary prismatic plane. For the TIP4P/Ice model, a
model reproducing the experimental value of the melting temperature of ice, the
first clear indication of the formation of a liquid layer appears at about -100
Celsius for the basal plane, at about -80 Celsius for the primary prismatic
plane and at about -70 Celsius for the secondary prismatic plane.Comment: 41 pages and 13 figure
Hard Spheres: Crystallization and Glass Formation
Motivated by old experiments on colloidal suspensions, we report molecular
dynamics simulations of assemblies of hard spheres, addressing crystallization
and glass formation. The simulations cover wide ranges of polydispersity s
(standard deviation of the particle size distribution divided by its mean) and
particle concentration. No crystallization is observed for s > 0.07. For 0.02 <
s < 0.07, we find that increasing the polydispersity at a given concentration
slows down crystal nucleation. The main effect here is that polydispersity
reduces the supersaturation since it tends to stabilise the fluid but to
destabilise the crystal. At a given polydispersity (< 0.07) we find three
regimes of nucleation: standard nucleation and growth at concentrations in and
slightly above the coexistence region; "spinodal nucleation", where the free
energy barrier to nucleation appears to be negligible, at intermediate
concentrations; and, at the highest concentrations, a new mechanism, still to
be fully understood, which only requires small re-arrangement of the particle
positions. The cross-over between the second and third regimes occurs at a
concentration, around 58% by volume, where the colloid experiments show a
marked change in the nature of the crystals formed and the particle dynamics
indicate an "ideal" glass transition
X-ray induced persistent photoconductivity in Si-doped AlGaAs
We demonstrate that X-ray irradiation can be used to induce an
insulator-metal transition in Si-doped AlGaAs, a
semiconductor with {\it DX} centers. The excitation mechanism of the {\it DX}
centers into their shallow donor state was revealed by studying the
photoconductance along with fluorescence. The photoconductance as a function of
incident X-ray energy exhibits an edge both at the Ga and As K-edge, implying
that core-hole excitation of Ga and As are efficient primary steps for the
excitation of {\it DX} centers. A high quantum yield () suggests that
the excitation is indirect and nonlocal, due to secondary electrons, holes, and
fluorescence photons.Comment: 3 pages of text, 6 figures. An error in Fig.5 was detected, so we
corrected i
- …