6 research outputs found

    Guidelines for Perioperative Care for Emergency Laparotomy Enhanced Recovery After Surgery (ERAS) Society Recommendations: Part 1—Preoperative: Diagnosis, Rapid Assessment and Optimization

    Get PDF
    BackgroundEnhanced Recovery After Surgery (ERAS) protocols reduce length of stay, complications and costs fora large number of elective surgical procedures. A similar, structured approach appears to improve outcomes, including mortality, for patients undergoing high-risk emergency general surgery, and specifically emergency laparotomy. These are the first consensus guidelines for optimal care of these patients using an ERAS approach.MethodsExperts in aspects of management of the high-risk and emergency general surgical patient were invited to contribute by the International ERAS Society. Pubmed, Cochrane, Embase, and MEDLINE database searches on English language publications were performed for ERAS elements and relevant specific topics. Studies on each item were selected with particular attention to randomized controlled trials, systematic reviews, meta-analyses and large cohort studies, and reviewed and graded using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. Recommendations were made on the best level of evidence, or extrapolation from studies on non-emergency patients when appropriate. The Delphi method was used to validate final recommendations. The guideline has been divided into two parts: Part 1—Preoperative Care and Part 2—Intraoperative and Postoperative management. This paper provides guidelines for Part 1.ResultsTwelve components of preoperative care were considered. Consensus was reached after three rounds.ConclusionsThese guidelines are based on the best available evidence for an ERAS approach to patients undergoing emergency laparotomy. Initial management is particularly important for patients with sepsis and physiological derangement. These guidelines should be used to improve outcomes for these high-risk patients

    Guidelines for Perioperative Care for Emergency Laparotomy Enhanced Recovery After Surgery (ERAS®) Society Recommendations: Part 2 -Emergency Laparotomy: Intra and Postoperative Care

    No full text
    This is Part 2 of the first consensus guidelines for optimal care of patients undergoing emergency laparotomy (EL) using an Enhanced Recovery After Surgery (ERAS) approach. This paper addresses intra- and postoperative aspects of care. Experts in aspects of management of high-risk and emergency general surgical patients were invited to contribute by the International ERAS <sup>®</sup> Society. PubMed, Cochrane, Embase, and Medline database searches were performed for ERAS elements and relevant specific topics. Studies on each item were selected with particular attention to randomized clinical trials, systematic reviews, meta-analyses, and large cohort studies and reviewed and graded using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. Recommendations were made on the best level of evidence, or extrapolation from studies on elective patients when appropriate. A modified Delphi method was used to validate final recommendations. Some ERAS <sup>®</sup> components covered in other guideline papers are outlined only briefly, with the bulk of the text focusing on key areas pertaining specifically to EL. Twenty-three components of intraoperative and postoperative care were defined. Consensus was reached after three rounds of a modified Delphi Process. These guidelines are based on best available evidence for an ERAS <sup>®</sup> approach to patients undergoing EL. These guidelines are not exhaustive but pull together evidence on important components of care for this high-risk patient population. As much of the evidence is extrapolated from elective surgery or emergency general surgery (not specifically laparotomy), many of the components need further evaluation in future studies

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore