603 research outputs found

    A murine herpesvirus closely related to ubiquitous human herpesviruses causes T-cell depletion

    Get PDF
    ABSTRACT The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4 + T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7. IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties. </jats:p

    RANKL Employs Distinct Binding Modes to Engage RANK and the Osteoprotegerin Decoy Receptor

    Get PDF
    SummaryOsteoprotegerin (OPG) and receptor activator of nuclear factor κB (RANK) are members of the tumor necrosis factor receptor (TNFR) superfamily that regulate osteoclast formation and function by competing for RANK ligand (RANKL). RANKL promotes osteoclast development through RANK activation, while OPG inhibits this process by sequestering RANKL. For comparison, we solved crystal structures of RANKL with RANK and RANKL with OPG. Complementary biochemical and functional studies reveal that the monomeric cytokine-binding region of OPG binds RANKL with ∼500-fold higher affinity than RANK and inhibits RANKL-stimulated osteoclastogenesis ∼150 times more effectively, in part because the binding cleft of RANKL makes unique contacts with OPG. Several side chains as well as the C-D and D-E loops of RANKL occupy different orientations when bound to OPG versus RANK. High affinity OPG binding requires a 90s loop Phe residue that is mutated in juvenile Paget’s disease. These results suggest cytokine plasticity may help to fine-tune specific tumor necrosis factor (TNF)-family cytokine/receptor pair selectivity

    The unusual dynamics of parasite actin result from isodesmic polymerization

    Get PDF
    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers

    Epitope mapping of Japanese encephalitis virus neutralizing antibodies by native mass spectrometry and hydrogen/deuterium exchange

    Get PDF
    Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated

    Atlas-Based White Matter Analysis in Individuals With Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome) and Unaffected Siblings

    Get PDF
    Background: Velo-cardio-facial syndrome (VCFS, MIM#192430, 22q11.2 Deletion Syndrome) is a genetic disorder caused by a deletion of about 40 genes at the q11.2 band of one copy of chromosome 22. Individuals with VCFS present with deficits in cognition and social functioning, high risk of psychiatric disorders, volumetric reductions in gray and white matter (WM) and some alterations of the WM microstructure. The goal of the current study was to characterize the WM microstructural differences in individuals with VCFS and unaffected siblings, and the correlation of WM microstructure with neuropsychological performance. We hypothesized that individuals with VCFS would have decreased indices of WM microstructure (fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD)), particularly in WM tracts to the frontal lobe, and that these measures would be correlated with cognitive functioning. Methods: Thirty-three individuals with VCFS (21 female) and 16 unaffected siblings (8 female) participated in DTI scanning and neuropsychological testing. We performed an atlas-based analysis, extracted FA, AD, and RD measures for 54 WM tracts (27 in each hemisphere) for each participant, and used MANOVAs to compare individuals with VCFS to siblings. For WM tracts that were statistically significantly different between VCFS and siblings (pFDR \u3c 0.05), we assessed the correlations between DTI and neuropsychological measures. Results: In VCFS individuals as compared to unaffected siblings, we found decreased FA in the uncinate fasciculus, and decreased AD in multiple WM tracts (bilateral superior and posterior corona radiata, dorsal cingulum, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, superior cerebellar peduncle, posterior thalamic radiation, and left anterior corona radiata, retrolenticular part of the internal capsule, external capsule, sagittal stratum). We also found significant correlations of AD with measures of executive function, IQ, working memory, and/or social cognition. Conclusions: Our results suggest that individuals with VCFS display abnormal WM connectivity in a widespread cerebro-anatomical network, involving tracts from/to all cerebral lobes and the cerebellum. Future studies could focus on the WM developmental trajectory in VCFS, the association of WM alterations with psychiatric disorders, and the effects of candidate 22q11.2 genes on WM anomalies

    The Effects of Gender and Catechol O-Methyltransferase (COMT) Val108/158Met Polymorphism on Emotion Regulation in Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome): An fMRI Study

    Get PDF
    Velo-cardio-facial syndrome (VCFS) is caused by a micro-deletion of over 40 genes at the q11.2 locus of chromosome 22 and is a risk factor for the development of schizophrenia and other psychiatric disorders. COMT, one of the genes located in the deleted region, has been considered as a major candidate gene for genetic susceptibility in psychiatric diseases. Its functional polymorphism Val108/158Met has been shown to affect prefrontal function and working memory and has been associated with emotional dysregulation. We utilized a functional magnetic resonance imaging (fMRI) event-related paradigm to asses COMT genotype and gender-moderated effects on the neural activation that are elicited by viewing emotionally salient images charged with pleasant, unpleasant, and neutral content. Since estrogen down-regulates COMT activity resulting in lower COMT activity in women than men, we hypothesized an allele-by-gender interaction effect on neural activation. Participants included 43 VCFS individuals (Val/male = 9, Val/female = 17, Met/male = 9, Met/female = 8). We observed a gender effect on processing positive emotions, in that girls activated the cingulate gyrus more than boys did. We further observed a significant gender-by-allele interaction effect on neural function specific to the frontal lobe during the processing of pleasant stimuli, and specific to limbic regions during the processing of unpleasant stimuli. Our results suggest that in VCFS, the effect of the COMT Val108/158Met polymorphism is moderated by gender during the processing of emotional stimuli and could contribute to the understanding of the way in which this COMT polymorphism affects vulnerability to neuropsychiatric disorders

    3D Environment Modeling for Falsification and Beyond with Scenic 3.0

    Full text link
    We present a major new version of Scenic, a probabilistic programming language for writing formal models of the environments of cyber-physical systems. Scenic has been successfully used for the design and analysis of CPS in a variety of domains, but earlier versions are limited to environments which are essentially two-dimensional. In this paper, we extend Scenic with native support for 3D geometry, introducing new syntax which provides expressive ways to describe 3D configurations while preserving the simplicity and readability of the language. We replace Scenic's simplistic representation of objects as boxes with precise modeling of complex shapes, including a ray tracing-based visibility system that accounts for object occlusion. We also extend the language to support arbitrary temporal requirements expressed in LTL, and build an extensible Scenic parser generated from a formal grammar of the language. Finally, we illustrate the new application domains these features enable with case studies that would have been impossible to accurately model in Scenic 2.Comment: 13 pages, 6 figures. Full version of a CAV 2023 tool paper, to appear in the Springer Lecture Notes in Computer Science serie

    Altered compensatory cytokine signaling underlies the discrepancy between Flt3–/– and Flt3l–/– mice

    Get PDF
    The receptor Flt3 and its ligand Flt3L are both critical for dendritic cell (DC) development, but DC deficiency is more severe i
    corecore