54 research outputs found

    Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System

    Get PDF
    Primates can recognize faces across a range of viewing conditions. Representations of individual identity should thus exist that are invariant to accidental image transformations like view direction. We targeted the recently discovered face-processing network of the macaque monkey that consists of six interconnected face-selective regions and recorded from the two middle patches (ML, middle lateral, and MF, middle fundus) and two anterior patches (AL, anterior lateral, and AM, anterior medial). We found that the anatomical position of a face patch was associated with a unique functional identity: Face patches differed qualitatively in how they represented identity across head orientations. Neurons in ML and MF were view-specific; neurons in AL were tuned to identity mirror-symetrically across views, thus achieving partial view invariance; and neurons in AM, the most anterior face patch, achieved almost full view invariance

    What Makes a Cell Face Selective? The Importance of Contrast

    Get PDF
    Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, for example, nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition

    A Cortical Region Consisting Entirely of Face-Selective Cells

    Get PDF
    Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque

    A face feature space in the macaque temporal lobe

    Get PDF
    The ability of primates to effortlessly recognize faces has been attributed to the existence of specialized face areas. One such area, the macaque middle face patch, consists almost entirely of cells that are selective for faces, but the principles by which these cells analyze faces are unknown. We found that middle face patch neurons detect and differentiate faces using a strategy that is both part based and holistic. Cells detected distinct constellations of face parts. Furthermore, cells were tuned to the geometry of facial features. Tuning was most often ramp-shaped, with a one-to-one mapping of feature magnitude to firing rate. Tuning amplitude depended on the presence of a whole, upright face and features were interpreted according to their position in a whole, upright face. Thus, cells in the middle face patch encode axes of a face space specialized for whole, upright faces

    Functional Connectivity of the Macaque Brain across Stimulus and Arousal States

    Get PDF
    Cortical networks generate temporally correlated brain activity. To clarify the functional significance of this correlated activity, we asked whether and how its structure depends on stimulus and arousal state. Using independent components analysis of macaque functional magnetic resonance imaging data, we identified a large number of brain networks that were strikingly reproducible across different visual stimulus contexts. Fewer networks were reproducible across alert and anesthetized brain states. Network complexity ranged from bilateral single-node networks to networks comprising multiple discrete nodes distributed over 3 cm of cortex; one network identified in our survey included parts of the temporal parietal occipital junction, dorsal premotor cortex, insula, and posterior cingulate cortex bilaterally. Our results reveal the wealth of spatially structured correlated networks throughout the brain in both alert and anesthetized monkeys, and show that anesthesia significantly alters the spatial structure of these networks

    Intelligent Information Loss: The Coding of Facial Identity, Head Pose, and Non-Face Information in the Macaque Face Patch System

    Get PDF
    Faces are a behaviorally important class of visual stimuli for primates. Recent work in macaque monkeys has identified six discrete face areas where most neurons have higher firing rates to images of faces compared with other objects (Tsao et al., 2006). While neurons in these areas appear to have different tuning (Freiwald and Tsao, 2010; Issa and DiCarlo, 2012), exactly what types of information and, consequently, which visual behaviors neural populations within each face area can support, is unknown. Here we use population decoding to better characterize three of these face patches (ML/MF, AL, and AM). We show that neural activity in all patches contains information that discriminates between the broad categories of face and nonface objects, individual faces, and nonface stimuli. Information is present in both high and lower firing rate regimes. However, there were significant differences between the patches, with the most anterior patch showing relatively weaker representation of nonface stimuli. Additionally, we find that pose-invariant face identity information increases as one moves to more anterior patches, while information about the orientation of the head decreases. Finally, we show that all the information we can extract from the population is present in patterns of activity across neurons, and there is relatively little information in the total activity of the population. These findings give new insight into the representations constructed by the face patch system and how they are successively transformed

    A Cortical Region Consisting Entirely of Face-Selective Cells

    Get PDF
    Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque

    Faces in Motion: Selectivity of Macaque and Human Face Processing Areas for Dynamic Stimuli

    Get PDF
    Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. Face areas in the fundus of the superior temporal sulcus responded to general object motion; face areas outside of the superior temporal sulcus fundus responded more to facial motion than general object motion. Thus, the macaque face-processing system exhibits regional specialization for facial motion. Human face areas, processing the same stimuli, exhibited specializations for facial motion as well. Yet the spatial patterns of facial motion selectivity differed across species, suggesting that facial dynamics are analyzed differently in humans and macaques

    Functional Connectivity of the Macaque Brain across Stimulus and Arousal States

    Get PDF
    Cortical networks generate temporally correlated brain activity. To clarify the functional significance of this correlated activity, we asked whether and how its structure depends on stimulus and arousal state. Using independent components analysis of macaque functional magnetic resonance imaging data, we identified a large number of brain networks that were strikingly reproducible across different visual stimulus contexts. Fewer networks were reproducible across alert and anesthetized brain states. Network complexity ranged from bilateral single-node networks to networks comprising multiple discrete nodes distributed over 3 cm of cortex; one network identified in our survey included parts of the temporal parietal occipital junction, dorsal premotor cortex, insula, and posterior cingulate cortex bilaterally. Our results reveal the wealth of spatially structured correlated networks throughout the brain in both alert and anesthetized monkeys, and show that anesthesia significantly alters the spatial structure of these networks

    Face selective patches in marmoset frontal cortex

    Get PDF
    © 2020, The Author(s). In humans and macaque monkeys, socially relevant face processing is accomplished via a distributed functional network that includes specialized patches in frontal cortex. It is unclear whether a similar network exists in New World primates, who diverged ~35 million years from Old World primates. The common marmoset is a New World primate species ideally placed to address this question given their complex social repertoire. Here, we demonstrate the existence of a putative high-level face processing network in marmosets. Like Old World primates, marmosets show differential activation in anterior cingulate and lateral prefrontal cortices while they view socially relevant videos of marmoset faces. We corroborate the locations of these frontal regions by demonstrating functional and structural connectivity between these regions and temporal lobe face patches. Given the evolutionary separation between macaques and marmosets, our results suggest this frontal network specialized for social face processing predates the separation between Platyrrhini and Catarrhini
    • …
    corecore