165 research outputs found

    Anthropic Explanation of the Dark Matter Abundance

    Full text link
    I use Bousso's causal diamond measure to make a statistical prediction for the dark matter abundance, assuming an axion with a large decay constant f_a >> 10^{12} GeV. Using a crude approximation for observer formation, the prediction agrees well with observation: 30% of observers form in regions with less dark matter than we observe, while 70% of observers form in regions with more dark matter. Large values of the dark matter ratio are disfavored by an elementary effect: increasing the amount of dark matter while holding fixed the baryon to photon ratio decreases the number of baryons inside one horizon volume. Thus the prediction is rather insensitive to assumptions about observer formation in universes with much more dark matter than our own. The key assumption is that the number of observers per baryon is roughly independent of the dark matter ratio for ratios near the observed value.Comment: 10 pages; v3: published version, references adde

    Bubble, Bubble, Flow and Hubble: Large Scale Galaxy Flow from Cosmological Bubble Collisions

    Full text link
    We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that generically bubble collisions lead to a coherent bulk flow of galaxies on some part of our sky, the details of which depend on the initial conditions of the collision and redshift to the galaxy in question. With other parameters held fixed the effects weaken as the amount of inflation inside our bubble grows, but can produce measurable flows past the number of efolds required to solve the flatness and horizon problems.Comment: 30 pages, 8 figures, pdftex, minor corrections and references adde

    A Conformal Field Theory for Eternal Inflation

    Full text link
    We study a statistical model defined by a conformally invariant distribution of overlapping spheres in arbitrary dimension d. The model arises as the asymptotic distribution of cosmic bubbles in d+1 dimensional de Sitter space, and also as the asymptotic distribution of bubble collisions with the domain wall of a fiducial "observation bubble" in d+2 dimensional de Sitter space. In this note we calculate the 2-,3-, and 4-point correlation functions of exponentials of the "bubble number operator" analytically in d=2. We find that these correlators, when carefully defined, are free of infrared divergences, covariant under the global conformal group, charge conserving, and transform with positive conformal dimensions that are related in a novel way to the charge. Although by themselves these operators probably do not define a full-fledged conformal field theory, one can use the partition function on a sphere to compute an approximate central charge in the 2D case. The theory in any dimension has a noninteracting limit when the nucleation rate of the bubbles in the bulk is very large. The theory in two dimensions is related to some models of continuum percolation, but it is conformal for all values of the tunneling rate.Comment: 30 pages, 8 figure

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure

    Bubble collisions and measures of the multiverse

    Full text link
    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an "initial" hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, in particular placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.Comment: 24 pages, two figures, plus 16-page appendix with one figure; v2: minor improvements and clarifications, conclusions unchanged (version to appear in JCAP

    Non-Gaussian bubbles in the sky

    Full text link
    We point out a possible generation mechanism of non-Gaussian bubbles in the sky due to bubble nucleation in the early universe. We consider a curvaton scenario for inflation and assume that the curvaton field phi, whose energy density is subdominant during inflation but which is responsible for the curvature perturbation of the universe, is coupled to another field sigma which undergoes false vacuum decay through quantum tunneling. For this model, we compute the skewness of the curvaton fluctuations due to its interaction with sigma during tunneling, that is, on the background of an instanton solution that describes false vacuum decay. We find that the resulting skewness of the curvaton can become large in the spacetime region inside the bubble. We then compute the corresponding skewness in the statistical distribution of the cosmic microwave background (CMB) temperature fluctuations. We find a non-vanishing skewness in a bubble-shaped region in the sky. It can be large enough to be detected in the near future, and if detected it will bring us invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure

    Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces

    Full text link
    We compute the Green's function for the Hodge Laplacian on the symmetric spaces M\times\Sigma, where M is a simply connected n-dimensional Riemannian or Lorentzian manifold of constant curvature and \Sigma is a simply connected Riemannian surface of constant curvature. Our approach is based on a generalization to the case of differential forms of the method of spherical means and on the use of Riesz distributions on manifolds. The radial part of the Green's function is governed by a fourth order analogue of the Heun equation.Comment: 18 page

    Anisotropic scale invariant cosmology

    Full text link
    We study a possibility of anisotropic scale invariant cosmology. It is shown that within the conventional Einstein gravity, the violation of the null energy condition is necessary. We construct an example based on a ghost condensation model that violates the null energy condition. The cosmological solution necessarily contains at least one contracting spatial direction as in the Kasner solution. Our cosmology is conjectured to be dual to, if any, a non-unitary anisotropic scale invariant Euclidean field theory. We investigate simple correlation functions of the dual theory by using the holographic computation. After compactification of the contracting direction, our setup may yield a dual field theory description of the winding tachyon condensation that might solve the singularity of big bang/crunch of the universe.Comment: 12 pages, v2: reference adde

    Defect CFTs and holographic multiverse

    Full text link
    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS_4x S^7, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.Comment: 19 pages; v2: typos fixed, minor changes

    Typicality versus thermality: An analytic distinction

    Full text link
    In systems with a large degeneracy of states such as black holes, one expects that the average value of probe correlation functions will be well approximated by the thermal ensemble. To understand how correlation functions in individual microstates differ from the canonical ensemble average and from each other, we study the variances in correlators. Using general statistical considerations, we show that the variance between microstates will be exponentially suppressed in the entropy. However, by exploiting the analytic properties of correlation functions we argue that these variances are amplified in imaginary time, thereby distinguishing pure states from the thermal density matrix. We demonstrate our general results in specific examples and argue that our results apply to the microstates of black holes.Comment: 22 pages + appendices, 3 eps figure
    • …
    corecore