74 research outputs found

    Remote Sensing Analyses of Neotectonic Active Regions in East-Kamchatka

    Get PDF
    The tectonic history of the Kamchatka Peninsula is dominated by continuous accumulation and amalgamation of terranes with different origins, which were delivered by convergence between the Pacific plate and in former times, the Kula plate against Eurasia (Freitag, 2002). The Kronotsky and Cape Kamchatka Peninsulas show that the collision of terranes and the resulting tectonics are still important for major parts of East-Kamchatka. While the collision of the Kronotsky Peninsula is sorely influenced by the convergence of the Pacific plate, the Cape Kamchatka Peninsula is affected by the collision of the Aleutian Arc with Kamchatka, what gives the opportunity to compare two different processes that resulted in the amalgamation of terranes to Kamchatka.conferenc

    Use and Reporting of Patient-Reported Outcomes in Trials of Palliative Radiotherapy: A Systematic Review

    Get PDF
    Two authors independently assessed eligibility. Trial characteristics were extracted and standard of PRO reporting was assessed in adherence to the Consolidated Standards of Reporting Trials (CONSORT) PRO extension. The association of the year of publication with the use of PROs was assessed by logistic regression. Factors associated with higher CONSORT-PRO adherence were analyzed by multiple regression. This study is reported following the PRISMA guidelines.Among 7377 records screened, 225 published clinical trials representing 24 281 patients were eligible. Of these, 45 trials (20%) used a PRO as a primary end point and 71 trials (31%) used a PRO as a secondary end point. The most prevalent PRO measures were the Numeric Rating Scale/Visual Analogue Scale (38 trials), European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire C30 (32 trials), and trial-specific unvalidated measures (25 trials). A more recent year of publication was significantly associated with a higher chance of PROs as a secondary end point (odds ratio [OR], 1.04 [95% CI, 1.00-1.07]; P = .03) but not as primary end point. Adherence to CONSORT-PRO was poor or moderate for most items. Mean (SD) adherence to the extension adherence score was 46.2% (19.6%) for trials with PROs as primary end point and 31.8% (19.8%) for trials with PROs as a secondary end point. PROs as a primary end point (regression coefficient, 9.755 [95% CI, 2.270-17.240]; P = .01), brachytherapy as radiotherapy modality (regression coefficient, 16.795 [95% CI, 5.840-27.751]; P = .003), and larger sample size (regression coefficient, 0.028 [95% CI, 0.006-0.049]; P = .01) were significantly associated with better PRO reporting per extension adherence score. Conclusions and relevance In this systematic review of palliative radiotherapy trials, the use and reporting of PROs had room for improvement for future trials, preferably with PROs as a primary end point

    A comprehensive set of simulations of high-velocity collisions between main sequence stars

    Get PDF
    We report on a very large set of simulations of collisions between two main sequence (MS) stars. These computations were done with the ``Smoothed Particle Hydrodynamics'' method. Realistic stellar structure models for evolved MS stars were used. In order to sample an extended domain of initial parameters space (masses of the stars, relative velocity and impact parameter), more than 15000 simulations were carried out. We considered stellar masses ranging between 0.1 and 75 Msun and relative velocities up to a few thousands km/s. To limit the computational burden, a resolution of 2000-30000 particles per star was used. The primary goal of this study was to build a complete database from which the result of any collision can be interpolated. This allows us to incorporate the effects of stellar collisions with an unprecedented level of realism into dynamical simulations of galactic nuclei and other dense stellar clusters. We make the data describing the initial condition and outcome (mass and energy loss, angle of deflection) of all our simulations freely available on the Internet. We find that the outcome of collisions depends sensitively on the stellar structure and that, in most cases, using polytropic models is inappropriate. Published fitting formulas for the collision outcomes, established from a limited set of collisions, prove of limited use because they do not allow robust extrapolation to other stellar structures or relative velocities.Comment: 45 pages, 44 figures. Modified to reflect the changes in the published version (MNRAS). PDF version with high-res figures at http://obswww.unige.ch/~freitag/papers/article_collisions.pdf, simulation data at http://obswww.unige.ch/~freitag/MODEST_WG4/FB_Collision_Data/, movies at http://obswww.unige.ch/~freitag/collisions/animations/index.htm

    Targeted adenovirus-mediated transduction of human T cells in vitro and in vivo

    Full text link
    Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy

    Smoothed Particle Hydrodynamics simulations of white dwarf collisions and close encounters

    Full text link
    The collision of two white dwarfs is a quite frequent event in dense stellar systems, like globular clusters and galactic nuclei. In this paper we present the results of a set of simulations of the close encounters and collisions of two white dwarfs. We use an up- to-date smoothed particle hydrodynamics code that incorporates very detailed input physics and an improved treatment of the artificial viscosity. Our simulations have been done using a large number of particles (~ 4 \times 10^5) and covering a wide range of velocities and initial distances of the colliding white dwarfs. We discuss in detail when the initial eccentric binary white dwarf survives the closest approach, when a lateral collision in which several mass transfer episodes occur is the outcome of the newly formed binary system, and which range of input parameters leads to a direct collision, in which only one mass transfer episode occurs. We also discuss the characteristics of the final configuration and we assess the possible observational signatures of the merger, such as the associated gravitational waveforms and the fallback luminosities. We find that the overall evolution of the system and the main characteristics of the final object agree with those found in previous studies. We also find that the fallback luminosities are close to 10^48 erg/s. Finally, we find as well that in the case of lateral and direct collisions the gravitational waveforms are characterized by large-amplitude peaks which are followed by a ring-down phase, while in the case in which the binary white dwarf survives the closest approach, the gravitational pattern shows a distinctive behavior, typical of eccentric systems.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    Deformationsanalyse und mechanische Kopplung eines aktiven fore-arcs in Raum und Zeit, Kamtschatka, Russische Föderation

    Get PDF
    Seit dem Mesozoikum wächst die kontinentale Kruste am aktiven Plattenrand von Kamtschatka durch Akkretion allochthoner Terrane. Dieses Wachstum manifestiert sich in der differenziellen Exhumierung und Hebung tektonischer Blöcke innerhalb des Akkretionskeils, parallel zum Kamtschatka- Graben. Die Kinematik der Exhumierung soll mittels strukturgeologischer und neotektonischer Deformationsanalyse erfasst und mit thermochronologischen Untersuchungen an Apatiten bis etwa ins Untere Pliozän quantifiziert werden.conferenc

    Dynamical Processes in Globular Clusters

    Full text link
    Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.Comment: Chapter 10, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    The dynamical formation of LMXBs in dense stellar environments: globular clusters and the inner bulge of M31

    Full text link
    The radial distribution of luminous L_X>10^{36} erg/s X-ray point sources in the bulge of M31 is investigated using archival Chandra observations. We find a significant increase of the specific frequency of X-ray sources, per unit stellar mass, within 1 arcmin from the centre of the galaxy. The radial distribution of surplus sources in this region follows the density squared law, suggesting that they are low-mass X-ray binaries formed dynamically in the dense inner bulge. We investigate dynamical formation of LMXBs, paying particular attention to the high velocity regime characteristic for galactic bulges, which has not been explored previously. Our calculations suggest that the majority of the surplus sources are formed in tidal captures of black holes by main sequence stars of low mass, M<0.3-0.4 M_sol, with some contribution of NS systems of same type. Due to the small size of the accretion discs a fraction of such systems may be persistent X-ray sources. Some of sources may be ultra-compact X-ray binaries with helium star/white dwarf companions. We also predict a large number of faint transients, both NS and BH systems, within 1 arcmin from the M31 galactic centre. Finally, we consider the population of dynamically formed binaries in Galactic globular clusters, emphasizing the differences between these two types of stellar environmentsComment: 18 pages, published in MNRA

    Stellar Processes Near the Massive Black Hole in the Galactic Center

    Full text link
    A massive black hole resides in the center of most, perhaps all galaxies. The one in the center of our home galaxy, the Milky Way, provides a uniquely accessible laboratory for studying in detail the connections and interactions between a massive black hole and the stellar system in which it grows; for investigating the effects of extreme density, velocity and tidal fields on stars; and for using stars to probe the central dark mass and probe post-Newtonian gravity in the weak- and strong-field limits. Recent results, open questions and future prospects are reviewed in the wider context of the theoretical framework and physical processes that underlie them. Contents: [1] Introduction (1.1) Astrophysical context (1.2) Science questions (1.3) Scope and connections to related topics [2] Observational overview: Stars in the Galactic center (2.1) The central 100 parsecs (2.2) The central parsec [3] Stellar dynamics at extreme densities (3.1) Physical processes and scales (3.2) The stellar cusp in the Galactic center (3.3) Mass segregation (3.4) Stellar Collisions [4] Probing the dark mass with stellar dynamics (4.1) Weighing and pinpointing the dark mass (4.2) Constraints on non-BH dark mass alternatives (4.3) Limits on MBH binarity (4.4) High-velocity runaway stars [5] Probing post-Newtonian gravity near the MBH (5.1) Relativistic orbital effects (5.2) Gravitational lensing [6] Strong star-MBH interactions (6.1) Tidal disruption (6.2) Dissipative interactions with the MBH [7] The riddle of the young stars (7.1) The difficulties of forming or importing stars near a MBH (7.2) Proposed solutions (7.3) Feeding the MBH with stellar winds [8] Outlook (8.1) Progress report (8.2) Future directionsComment: Invited review article, to appear in Physics Reports. 101 p
    • …
    corecore