164 research outputs found

    Fast Simulation of Gaussian-Mode Scattering for Precision Interferometry

    Get PDF
    Understanding how laser light scatters from realistic mirror surfaces is crucial for the design, com- missioning and operation of precision interferometers, such as the current and next generation of gravitational-wave detectors. Numerical simulations are indispensable tools for this task but their utility can in practice be limited by the computational cost of describing the scattering process. In this paper we present an efficient method to significantly reduce the computational cost of optical simulations that incorporate scattering. This is accomplished by constructing a near optimal representation of the complex, multi-parameter 2D overlap integrals that describe the scattering process (referred to as a reduced order quadrature). We demonstrate our technique by simulating a near-unstable Fabry-Perot cavity and its control signals using similar optics to those installed in one of the LIGO gravitational-wave detectors. We show that using reduced order quadrature reduces the computational time of the numerical simulation from days to minutes (a speed-up of ≈2750×\approx 2750 \times) whilst incurring negligible errors. This significantly increases the feasibility of modelling interferometers with realistic imperfections to overcome current limits in state-of-the-art optical systems. Whilst we focus on the Hermite-Gaussian basis for describing the scattering of the optical fields, our method is generic and could be applied with any suitable basis. An implementation of this reduced order quadrature method is provided in the open source interferometer simulation software Finesse.Comment: 15 pages, 11 figure

    Experimental demonstration of a Displacement noise Free Interferometry scheme for gravitational wave detectors showing displacement noise reduction at low frequencies

    Full text link
    This paper reports an experimental demonstration of partial displacement noise free laser interferometry in the gravitational wave detection band. The used detuned Fabry-Perot cavity allows the isolation of the mimicked gravitational wave signal from the displacement noise on the cavities input mirror. By properly combining the reflected and transmitted signals from the cavity a reduction of the displacement noise was achieved. Our results represent the first experimental demonstration of this recently proposed displacement noise free laser interferometry scheme. Overall we show that the rejection ratio of the displacement noise to the gravitational wave signal was improved in the frequency range of 10 Hz to 10 kHz with a typical factor of 60.Comment: 5 pages, 3 figure

    Sensitivity of intracavity filtering schemes for detecting gravitational waves

    Get PDF
    We consider enhancing the sensitivity of future gravitational-wave detectors by adding optical filters inside the signal-recycling cavity -- an intracavity filtering scheme, which coherently feeds the sideband signal back to the interferometer with a proper frequency-dependent phase. We study three cases of such a scheme with different motivations: (i) the case of backaction noise evasion, trying to cancel radiation-pressure noise with only one filter cavity for a signal-recycled interferometer; (ii) the speed-meter case, similar to the speed-meter scheme proposed by Purdue and Chen [Phys. Rev. D 66, 122004 (2002)] but without the resonant-sideband-extraction mirror, and also relieves the optical requirement on the sloshing mirror; (iii) the broadband detection case with squeezed-light input, numerically optimized for a broadband sensitivity.Comment: 10 pages, 10 figure

    Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors

    Full text link
    The application of higher-order Laguerre Gauss (LG) modes in large-scale gravitational wave detectors has recently been proposed. In comparison to the fundamental mode, some higher-order Laguerre Gauss modes can significantly reduce the contribution of coating Brownian noise. Using frequency domain simulations we give a detailed analysis of the longitudinal and angular control signals derived with a LG33 mode in comparison to the fundamental TEM00 mode. The performance regarding interferometric sensing and control of the LG33 mode is found to be similar, if not even better in all aspects of interest. In addition, we evaluate the sensitivity gain of the implementation of LG33 modes into the Advanced Virgo instrument. Our analysis shows that the application of the LG33 mode results in a broadband improvement of the Advanced Virgo sensitivity, increasing the potential detection rate of binary neutron star inspirals by a factor 2.1.Comment: 12 pages, 8 figure

    Experimental demonstration of higher-order Laguerre-Gauss mode interferometry

    Get PDF
    The compatibility of higher-order Laguerre-Gauss (LG) modes with interferometric technologies commonly used in gravitational wave detectors is investigated. In this paper we present the first experimental results concerning the performance of the LG33 mode in optical resonators. We show that the Pound-Drever-Hall error signal for a LG33 mode in a linear optical resonator is identical to that of the more commonly used LG00 mode, and demonstrate the feedback control of the resonator with a LG33 mode. We succeeded to increase the mode purity of a LG33 mode generated using a spatial-light modulator from 51% to 99% upon transmission through a linear optical resonator. We further report the experimental verification that a triangular optical resonator does not transmit helical LG modes
    • …
    corecore