11,369 research outputs found
Confinement of two-dimensional excitons in a non-homogeneous magnetic field
The effective Hamiltonian describing the motion of an exciton in an external
non-homogeneous magnetic field is derived. The magnetic field plays the role of
an effective potential for the exciton motion, results into an increment of the
exciton mass and modifies the exciton kinetic energy operator. In contrast to
the homogeneous field case, the exciton in a non-homogeneous magnetic field can
also be trapped in the low field region and the field gradient increases the
exciton confinement. The trapping energy and wave function of the exciton in a
GaAs two-dimensional electron gas for specific circular magnetic field
configurations are calculated. The results show than excitons can be trapped by
non-homogeneous magnetic fields, and that the trapping energy is strongly
correlated with the shape and strength of the non-homogeneous magnetic field
profile.Comment: 9 pages, 12 figure
Experimental demonstration of a mu=-1 metamaterial lens for magnetic resonance imaging
In this work a mu=-1 metamaterial (MM) lens for magnetic resonance imaging
(MRI) is demonstrated. MRI uses surface coils to detect the radiofrequency(RF)
energy absorbed and emitted by the nuclear spins in the imaged object. The
proposed MM lens manipulates the RF field detected by these surface coils, so
that the coil sensitivity and spatial localization is substantially improved.
Beyond this specific application, we feel that the reported results are the
experimental confirmation of a new concept for the manipulation of RF field in
MRI, which paves the way to many other interesting applications.Comment: 9 pages, 3 figure
Conformations of dendrimers in dilute solution
Conformations of isolated homo- dendrimers of G=1-7 generations with D=1-6
spacers have been studied in the good and poor solvents, as well as across the
coil-to-globule transition, by means of a version of the Gaussian
self-consistent (GSC) method and Monte Carlo (MC) simulation in continuous
space based on the same coarse-grained model. The latter includes harmonic
springs between connected monomers and the pair-wise Lennard-Jones potential
with a hard core repulsion. The scaling law for the dendrimer size, the degrees
of bond stretching and steric congestion, as well as the radial density, static
structure factor, and asphericity have been analysed. It is also confirmed that
while smaller dendrimers have a dense core, larger ones develop a hollow domain
at some separation from the centre.Comment: RevTeX, 14 pages, 19 PS figures, Accepted for publication in J. Chem.
Phy
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Domain wall description of superconductivity
In the present work we shall address the issue of electrical conductivity in
superconductors in the perspective of superconducting domain wall solutions in
the realm of field theory. We take our set up made out of a dynamical complex
scalar field coupled to gauge field to be responsible for superconductivity and
an extra scalar real field that plays the role of superconducting domain walls.
The temperature of the system is interpreted through the fact that the soliton
following accelerating orbits is a Rindler observer experiencing a thermal
bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL
Field-theoretical renormalization group for a flat two-dimensional Fermi surface
We implement an explicit two-loop calculation of the coupling functions and
the self-energy of interacting fermions with a two-dimensional flat Fermi
surface in the framework of the field theoretical renormalization group (RG)
approach. Throughout the calculation both the Fermi surface and the Fermi
velocity are assumed to be fixed and unaffected by interactions. We show that
in two dimensions, in a weak coupling regime, there is no significant change in
the RG flow compared to the well-known one-loop results available in the
literature. However, if we extrapolate the flow to a moderate coupling regime
there are interesting new features associated with an anisotropic suppression
of the quasiparticle weight Z along the Fermi surface, and the vanishing of the
renormalized coupling functions for several choices of the external momenta.Comment: 16 pages and 22 figure
- …