179 research outputs found
Radial evolution of the April 2020 stealth coronal mass ejection between 0.8 and 1 AU - Comparison of Forbush decreases at Solar Orbiter and near the Earth
Aims. We present observations of the first coronal mass ejection (CME) observed at the Solar Orbiter spacecraft on April 19, 2020, and the associated Forbush decrease (FD) measured by its High Energy Telescope (HET). This CME is a multispacecraft event also seen near Earth the next day. Methods. We highlight the capabilities of HET for observing small short-term variations of the galactic cosmic ray count rate using its single detector counters. The analytical ForbMod model is applied to the FD measurements to reproduce the Forbush decrease at both locations. Input parameters for the model are derived from both in situ and remote-sensing observations of the CME. Results. The very slow (~350 km/s) stealth CME caused a FD with an amplitude of 3 % in the low-energy cosmic ray measurements at HET and 2 % in a comparable channel of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter, as well as a 1 % decrease in neutron monitor measurements. Significant differences are observed in the expansion behavior of the CME at different locations, which may be related to influence of the following high speed solar wind stream. Under certain assumptions, ForbMod is able to reproduce the observed FDs in low-energy cosmic ray measurements from HET as well as CRaTER, but with the same input parameters, the results do not agree with the FD amplitudes at higher energies measured by neutron monitors on Earth. We study these discrepancies and provide possible explanations. Conclusions. This study highlights that the novel measurements of the Solar Orbiter can be coordinated with other spacecraft to improve our understanding of space weather in the inner heliosphere. Multi-spacecraft observations combined with data-based modeling are also essential to understand the propagation and evolution of CMEs as well as their space weather impacts
First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector
Context. Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a year.
Aims. EPD measures suprathermal and energetic particles in the energy range from a few keV up to (near-) relativistic energies (few MeV for electrons and about 500 MeV nucâ1 for ions). We present an overview of the initial results from the first year of operations and we provide a first assessment of issues and limitations. In addition, we present areas where EPD excels and provides opportunities for significant scientific progress in understanding how our Sun shapes the heliosphere.
Methods. We used the solar particle events observed by Solar Orbiter on 21 July and between 10 and 11 December 2020 to discuss the capabilities, along with updates and open issues related to EPD on Solar Orbiter. We also give some words of caution and caveats related to the use of EPD-derived data.
Results. During this first year of operations of the Solar Orbiter mission, EPD has recorded several particle events at distances between 0.5 and 1 au from the Sun. We present dynamic and time-averaged energy spectra for ions that were measured with a combination of all four EPD sensors, namely: the SupraThermal Electron and Proton sensor (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) as well as the associated energy spectra for electrons measured with STEP and EPT. We illustrate the capabilities of the EPD suite using the 10 and 11 December 2020 solar particle event. This event showed an enrichment of heavy ions as well as 3He, for which we also present dynamic spectra measured with SIS. The high anisotropy of electrons at the onset of the event and its temporal evolution is also shown using data from these sensors. We discuss the ongoing in-flight calibration and a few open instrumental issues using data from the 21 July and the 10 and 11 December 2020 events and give guidelines and examples for the usage of the EPD data. We explain how spacecraft operations may affect EPD data and we present a list of such time periods in the appendix. A list of the most significant particle enhancements as observed by EPT during this first year is also provided.Ministerio de EconomĂa y CompetitividadAgencia Estatal de InvestigaciĂł
The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (. 1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe (PSP), the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection (CME) and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.
Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.
Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the
Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of
the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to
characterize the particle propagation in the interplanetary medium.
Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flareâfootpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involve
More Than Smell - COVID-19 Is Associated With Severe Impairment of Smell,Taste, and Chemesthesis
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms
More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ñ100) revealed a mean reduction of smell (-79.7 ñ 28.7, mean ñ standard deviation), taste (-69.0 ñ 32.6), and chemesthetic (-37.3 ñ 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. é 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved
Rapid assessment of olfactory sensitivity using the âSniffinâ Sticksâ
Introduction: Assessment of olfactory performance is of high clinical interest in the contexts of smell loss as well as neurological diseases, and recently gained attention in obesity research. Available olfactory tests, especially for assessing olfactory sensitivity, are time-consuming and require high cognitive capacity. Therefore, we aimed to establish a short procedure for reliably testing olfactory sensitivity using a subtest of the âSniffinâ Sticksâ battery. Evaluation criteria are test duration, validity, and test-retest reliability. Methods: In a preliminary study using a within-subject repeated-measures design, we measured olfactory sensitivity for n-butanol in 20 young and healthy participants. We compared sensitivity obtained with three different measures during two sessions in a pseudo-randomized order: a standard single-staircase three-alternative forced-choice procedure with seven reversals (SSP_7); an abbreviated version with five reversals (SSP_5); and an ascending presentation of 16 dilution steps from lowest to highest odor concentration (brief ascending procedure, BAP). Results: Compared to the SSP_7, the BAP was 51%, and the SSP_5 26% shorter in duration. Both the BAP and SSP_5 scores were highly correlated with the SSP_7. The test-retest reliability in all three tests was similar to that typically reported in olfactory research. Conclusion: The abbreviated tests are valid measures of olfactory sensitivity. Especially, the BAP is as reliable as the standard method, but remarkably faster and easier to perform. Implications: Thus, the short procedures bear potential for both research and clinical practice, especially for complex study designs with time constraints on olfactory testing and for patient populations with attention deficits
- âŠ