903 research outputs found

    The cosmological BCS mechanism and the Big Bang Singularity

    Full text link
    We provide a novel mechanism that resolves the Big Bang Singularity present in FRW space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in General Relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter HH to zero and results in a non-singular bounce, at least in some special cases.Comment: replaced to match the journal versio

    Calculation of Particle Production by Nambu Goldstone Bosons with Application to Inflation Reheating and Baryogenesis

    Full text link
    A semiclassical calculation of particle production by a scalar field in a potential is performed. We focus on the particular case of production of fermions by a Nambu-Goldstone boson ξ\theta. We have derived a (non)local equation of motion for the ξ\theta-field with the backreaction of the produced particles taken into account. The equation is solved in some special cases, namely for purely Nambu-Goldstone bosons and for the tilted potential U(ξ)∝m2ξ2 U(\theta ) \propto m^2 \theta^2 . Enhanced production of bosons due to parametric resonance is investigated; we argue that the resonance probably disappears when the expansion of the universe is included. Application of our work on particle production to reheating and an idea for baryogenesis in inflation are mentioned.Comment: Submitted to Physical Review {\rm D}: October 4, 1994 21 page, UM-AC 94-3

    A revision of the Generalized Uncertainty Principle

    Full text link
    The Generalized Uncertainty Principle arises from the Heisenberg Uncertainty Principle when gravity is taken into account, so the leading order correction to the standard formula is expected to be proportional to the gravitational constant GN=LPl2G_N = L_{Pl}^2. On the other hand, the emerging picture suggests a set of departures from the standard theory which demand a revision of all the arguments used to deduce heuristically the new rule. In particular, one can now argue that the leading order correction to the Heisenberg Uncertainty Principle is proportional to the first power of the Planck length LPlL_{Pl}. If so, the departures from ordinary quantum mechanics would be much less suppressed than what is commonly thought.Comment: 6 pages, 1 figur

    Constraints on the Intergalactic Transport of Cosmic Rays

    Get PDF
    Motivated by recent experimental proposals to search for extragalactic cosmic rays (including anti-matter from distant galaxies), we study particle propagation through the intergalactic medium (IGM). We first use estimates of the magnetic field strength between galaxies to constrain the mean free path for diffusion of particles through the IGM. We then develop a simple analytic model to describe the diffusion of cosmic rays. Given the current age of galaxies, our results indicate that, in reasonable models, a completely negligible number of particles can enter our Galaxy from distances greater than ∌100\sim 100 Mpc for relatively low energies (EE <106< 10^6 GeV/n). We also find that particle destruction in galaxies along the diffusion path produces an exponential suppression of the possible flux of extragalactic cosmic rays. Finally, we use gamma ray constraints to argue that the distance to any hypothetical domains of anti-matter must be roughly comparable to the horizon scale.Comment: 24 pages, AAS LaTex, 1 figure, accepted to Ap

    False Vacuum Chaotic Inflation: The New Paradigm?

    Get PDF
    Recent work is reported on inflation model building in the context of supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid') Chaotic Inflation. Globally supersymmetric models do not survive in generic supergravity theories, but fairly simple conditions can be formulated which do ensure successful supergravity inflation. The conditions are met in some of the versions of supergravity that emerge from superstrings.Comment: 4 pages, LATEX, LANCASTER-TH 94-1

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure

    Inflation without Inflaton(s)

    Get PDF
    We propose a model for early universe cosmology without the need for fundamental scalar fields. Cosmic acceleration and phenomenologically viable reheating of the universe results from a series of energy transitions, where during each transition vacuum energy is converted to thermal radiation. We show that this `cascading universe' can lead to successful generation of adiabatic density fluctuations and an observable gravity wave spectrum in some cases, where in the simplest case it reproduces a spectrum similar to slow-roll models of inflation. We also find the model provides a reasonable reheating temperature after inflation ends. This type of model may also be relevant for addressing the smallness of the vacuum energy today.Comment: 13 pages, 4 figures, published versio

    Double Field Inflation

    Full text link
    We present an inflationary universe model which utilizes two coupled real scalar fields. The inflation field ϕ\phi experiences a first order phase transition and its potential dominates the energy density of the Universe during the inflationary epoch. This field ϕ\phi is initially trapped in its metastable minimum and must tunnel through a potential barrier to reach the true vacuum. The second auxiliary field ψ\psi couples to the inflaton field and serves as a catalyst to provide an abrupt end to the inflationary epoch; i.e., the ψ\psi field produces a time-dependent nucleation rate for bubbles of true ϕ\phi vacuum. In this model, we find that bubbles of true vacuum can indeed percolate and we argue that thermalization of the interiors can more easily take place. The required degree of flatness (i.e., the fine tuning) in the potential of the ψ\psi field is comparable to that of other models which invoke slowly rolling fields. Pseudo Nambu-Goldstone bosons may naturally provide the flat potential for the rolling field.Comment: 18 pages, 2 figures, This early paper is being placed on the archive to make it more easily accessible in light of recent interest in reviving tunneling inflationary models and as its results are used in an accompanying submissio

    WIMPs search by scintillators: possible strategy for annual modulation search with large-mass highly-radiopure NaI(Tl)

    Get PDF
    The DAMA experiments are running deep underground in the Gran Sasso National Laboratory. Several interesting results have been achieved so far. Here a maximum likelihood method to search for the WIMP annual modulation signature is discussed and applied to a set of preliminary test data collected with large mass highly radiopure NaI(Tl) detectors. Various related technical arguments are briefly addressed.Comment: 6 pages, 4 figures, LaTex. Contributed paper to TAUP97; to appear in the Proceeding

    Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass

    Full text link
    The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop. III) stars, potentially leading to a new phase of stellar evolution known as a "Dark Star". When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. The influx of DM due to capture may thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero metallicity stars; in this case DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive Pop. III stars are found, they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected grammer, and added citations revised for submission to JCA
    • 

    corecore