35 research outputs found

    Solar Wakes of Dark Matter Flows

    Get PDF
    We analyze the effect of the Sun's gravitational field on a flow of cold dark matter (CDM) through the solar system in the limit where the velocity dispersion of the flow vanishes. The exact density and velocity distributions are derived in the case where the Sun is a point mass. The results are extended to the more realistic case where the Sun has a finite size spherically symmetric mass distribution. We find that regions of infinite density, called caustics, appear. One such region is a line caustic on the axis of symmetry, downstream from the Sun, where the flow trajectories cross. Another is a cone-shaped caustic surface near the trajectories of maximum scattering angle. The trajectories forming the conical caustic pass through the Sun's interior and probe the solar mass distribution, raising the possibility that the solar mass distribution may some day be measured by a dark matter detector on Earth. We generalize our results to the case of flows with continuous velocity distributions, such as that predicted by the isothermal model of the Milky Way halo.Comment: 30 pages, 8 figure

    Gauged Inflation

    Get PDF
    We propose a model for cosmic inflation which is based on an effective description of strongly interacting, nonsupersymmetric matter within the framework of dynamical Abelian projection and centerization. The underlying gauge symmetry is assumed to be SU(N+1)SU(N+1) with N1N \gg 1. Appealing to a thermodynamical treatment, the ground-state structure of the model is classically determined by a potential for the inflaton field (dynamical monopole condensate) which allows for nontrivially BPS saturated and thereby stable solutions. For T<MPT<M_P this leads to decoupling of gravity from the inflaton dynamics. The ground state dynamics implies a heat capacity for the vacuum leading to inflation for temperatures comparable to the mass scale MM of the potential. The dynamics has an attractor property. In contrast to the usual slow-roll paradigm we have mHm\gg H during inflation. As a consequence, density perturbations generated from the inflaton are irrelevant for the formation of large-scale structure, and the model has to be supplemented with an inflaton independent mechanism for the generation of spatial curvature perturbations. Within a small fraction of the Hubble time inflation is terminated by a transition of the theory to its center symmetric phase. The spontaneously broken ZN+1Z_{N+1} symmetry stabilizes relic vector bosons in the epochs following inflation. These heavy relics contribute to the cold dark matter of the universe and potentially originate the UHECRs beyond the GZK bound.Comment: 23 pages, 4 figures, subsection added, revision of text, to app. in PR

    The cosmic ray positron excess and neutralino dark matter

    Get PDF
    Using a new instrument, the HEAT collaboration has confirmed the excess of cosmic ray positrons that they first detected in 1994. We explore the possibility that this excess is due to the annihilation of neutralino dark matter in the galactic halo. We confirm that neutralino annihilation can produce enough positrons to make up the measured excess only if there is an additional enhancement to the signal. We quantify the `boost factor' that is required in the signal for various models in the Minimal Supersymmetric Standard Model parameter space, and study the dependence on various parameters. We find models with a boost factor greater than 30. Such an enhancement in the signal could arise if we live in a clumpy halo. We discuss what part of supersymmetric parameter space is favored (in that it gives the largest positron signal), and the consequences for other direct and indirect searches of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD

    Non-minimal coupling of the scalar field and inflation

    Full text link
    We study the prescriptions for the coupling constant of a scalar field to the Ricci curvature of spacetime in specific gravity and scalar field theories. The results are applied to the most popular inflationary scenarios of the universe; their theoretical consistency and certain observational constraints are discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review

    Inflation and Preheating in NO models

    Get PDF
    We study inflationary models in which the effective potential of the inflaton field does not have a minimum, but rather gradually decreases at large ϕ\phi. In such models the inflaton field does not oscillate after inflation, and its effective mass becomes vanishingly small, so the standard theory of reheating based on the decay of the oscillating inflaton field does not apply. For a long time the only mechanism of reheating in such non-oscillatory (NO) models was based on gravitational particle production in an expanding universe. This mechanism is very inefficient. We will show that it may lead to cosmological problems associated with large isocurvature fluctuations and overproduction of dangerous relics such as gravitinos and moduli fields. We also note that the setting of initial conditions for the stage of reheating in these models should be reconsidered. All of these problems can be resolved in the context of the recently proposed scenario of instant preheating if there exists an interaction g2ϕ2χ2{g^2} \phi^2\chi^2 of the inflaton field ϕ\phi with another scalar field χ\chi. We show that the mechanism of instant preheating in NO models is much more efficient than the usual mechanism of gravitational particle production even if the coupling constant g2g^2 is extremely small, 1014g2110^{-14} \ll g^2 \ll 1.Comment: 10 pages, revte

    Cosmological consequences of a Chaplygin gas dark energy

    Get PDF
    A combination of recent observational results has given rise to what is currently known as the dark energy problem. Although several possible candidates have been extensively discussed in the literature to date the nature of this dark energy component is not well understood at present. In this paper we investigate some cosmological implications of another dark energy candidate: an exotic fluid known as the Chaplygin gas, which is characterized by an equation of state p=A/ρp = -A/\rho, where AA is a positive constant. By assuming a flat scenario driven by non-relativistic matter plus a Chaplygin gas dark energy we study the influence of such a component on the statistical properties of gravitational lenses. A comparison between the predicted age of the universe and the latest age estimates of globular clusters is also included and the results briefly discussed. In general, we find that the behavior of this class of models may be interpreted as an intermediary case between the standard and Λ\LambdaCDM scenarios.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Extended Theories of Gravity and their Cosmological and Astrophysical Applications

    Full text link
    We review Extended Theories of Gravity in metric and Palatini formalism pointing out their cosmological and astrophysical application. The aim is to propose an alternative approach to solve the puzzles connected to dark components.Comment: 44 pages, 11 figure
    corecore