35 research outputs found
Solar Wakes of Dark Matter Flows
We analyze the effect of the Sun's gravitational field on a flow of cold dark
matter (CDM) through the solar system in the limit where the velocity
dispersion of the flow vanishes. The exact density and velocity distributions
are derived in the case where the Sun is a point mass. The results are extended
to the more realistic case where the Sun has a finite size spherically
symmetric mass distribution. We find that regions of infinite density, called
caustics, appear. One such region is a line caustic on the axis of symmetry,
downstream from the Sun, where the flow trajectories cross. Another is a
cone-shaped caustic surface near the trajectories of maximum scattering angle.
The trajectories forming the conical caustic pass through the Sun's interior
and probe the solar mass distribution, raising the possibility that the solar
mass distribution may some day be measured by a dark matter detector on Earth.
We generalize our results to the case of flows with continuous velocity
distributions, such as that predicted by the isothermal model of the Milky Way
halo.Comment: 30 pages, 8 figure
Gauged Inflation
We propose a model for cosmic inflation which is based on an effective
description of strongly interacting, nonsupersymmetric matter within the
framework of dynamical Abelian projection and centerization. The underlying
gauge symmetry is assumed to be with . Appealing to a
thermodynamical treatment, the ground-state structure of the model is
classically determined by a potential for the inflaton field (dynamical
monopole condensate) which allows for nontrivially BPS saturated and thereby
stable solutions. For this leads to decoupling of gravity from the
inflaton dynamics. The ground state dynamics implies a heat capacity for the
vacuum leading to inflation for temperatures comparable to the mass scale
of the potential. The dynamics has an attractor property. In contrast to the
usual slow-roll paradigm we have during inflation. As a consequence,
density perturbations generated from the inflaton are irrelevant for the
formation of large-scale structure, and the model has to be supplemented with
an inflaton independent mechanism for the generation of spatial curvature
perturbations. Within a small fraction of the Hubble time inflation is
terminated by a transition of the theory to its center symmetric phase. The
spontaneously broken symmetry stabilizes relic vector bosons in the
epochs following inflation. These heavy relics contribute to the cold dark
matter of the universe and potentially originate the UHECRs beyond the GZK
bound.Comment: 23 pages, 4 figures, subsection added, revision of text, to app. in
PR
The cosmic ray positron excess and neutralino dark matter
Using a new instrument, the HEAT collaboration has confirmed the excess of
cosmic ray positrons that they first detected in 1994. We explore the
possibility that this excess is due to the annihilation of neutralino dark
matter in the galactic halo. We confirm that neutralino annihilation can
produce enough positrons to make up the measured excess only if there is an
additional enhancement to the signal. We quantify the `boost factor' that is
required in the signal for various models in the Minimal Supersymmetric
Standard Model parameter space, and study the dependence on various parameters.
We find models with a boost factor greater than 30. Such an enhancement in the
signal could arise if we live in a clumpy halo. We discuss what part of
supersymmetric parameter space is favored (in that it gives the largest
positron signal), and the consequences for other direct and indirect searches
of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD
Non-minimal coupling of the scalar field and inflation
We study the prescriptions for the coupling constant of a scalar field to the
Ricci curvature of spacetime in specific gravity and scalar field theories. The
results are applied to the most popular inflationary scenarios of the universe;
their theoretical consistency and certain observational constraints are
discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review
Inflation and Preheating in NO models
We study inflationary models in which the effective potential of the inflaton
field does not have a minimum, but rather gradually decreases at large .
In such models the inflaton field does not oscillate after inflation, and its
effective mass becomes vanishingly small, so the standard theory of reheating
based on the decay of the oscillating inflaton field does not apply. For a long
time the only mechanism of reheating in such non-oscillatory (NO) models was
based on gravitational particle production in an expanding universe. This
mechanism is very inefficient. We will show that it may lead to cosmological
problems associated with large isocurvature fluctuations and overproduction of
dangerous relics such as gravitinos and moduli fields. We also note that the
setting of initial conditions for the stage of reheating in these models should
be reconsidered. All of these problems can be resolved in the context of the
recently proposed scenario of instant preheating if there exists an interaction
of the inflaton field with another scalar field
. We show that the mechanism of instant preheating in NO models is much
more efficient than the usual mechanism of gravitational particle production
even if the coupling constant is extremely small, .Comment: 10 pages, revte
Cosmological consequences of a Chaplygin gas dark energy
A combination of recent observational results has given rise to what is
currently known as the dark energy problem. Although several possible
candidates have been extensively discussed in the literature to date the nature
of this dark energy component is not well understood at present. In this paper
we investigate some cosmological implications of another dark energy candidate:
an exotic fluid known as the Chaplygin gas, which is characterized by an
equation of state , where is a positive constant. By assuming
a flat scenario driven by non-relativistic matter plus a Chaplygin gas dark
energy we study the influence of such a component on the statistical properties
of gravitational lenses. A comparison between the predicted age of the universe
and the latest age estimates of globular clusters is also included and the
results briefly discussed. In general, we find that the behavior of this class
of models may be interpreted as an intermediary case between the standard and
CDM scenarios.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
Extended Theories of Gravity and their Cosmological and Astrophysical Applications
We review Extended Theories of Gravity in metric and Palatini formalism
pointing out their cosmological and astrophysical application. The aim is to
propose an alternative approach to solve the puzzles connected to dark
components.Comment: 44 pages, 11 figure