2,651 research outputs found

    Evidence for a 3.8 MeV state in 9Be

    Get PDF
    The breakup reaction 9Be(4He,3a)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 8 MeV were populated and reconstructed through measurements of the charged reaction products. Evidence is given for a state in 9Be at 3.82-0.09+0.08 MeV with width=1240-90+270 keV. This is consistent with two recent measurements of a state with similar properties in the mirror nucleus 9B. An analysis of the reduced widths (Beg.s.8 channel) of this state along with the proposed mirror state has led to a firm limit of J<=7/2 and a tentative assignment of J^pi=1/2- or 3/2-

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore