193 research outputs found

    Anatomical classification of the shape and topography of the stomach

    Get PDF
    The aim of the study was to present the classification of anatomical variations of the stomach, based on the radiological and historical data. In years 2006–2010, 2,034 examinations of the upper digestive tract were performed. Normal stomach anatomy or different variations of the organ shape and/or topography without any organic radiologically detectable gastric lesions were revealed in 568 and 821 cases, respectively. Five primary groups were established: abnormal position along longitudinal (I) and horizontal axis (II), as well as abnormal shape (III) and stomach connections (IV) or mixed forms (V). The first group contains abnormalities most commonly observed among examined patients such as stomach rotation and translocation to the chest cavity, including sliding, paraesophageal, mixed-form and upside-down hiatal diaphragmatic hernias, as well as short esophagus, and the other diaphragmatic hernias, that were not found in the evaluated population. The second group includes the stomach cascade. The third and fourth groups comprise developmental variations and organ malformations that were not observed in evaluated patients. The last group (V) encloses mixed forms that connect two or more previous variations

    Duplex ventral pancreas

    Full text link
    Complete duplication of the ventral pancreatic ductal system in 2 patients is reported. Both patients, during evaluation for recurrent abdominal pain, underwent endoscopic retrograde cholangiopancreatography that revealed typical changes of chronic pancreatitis and pseudocysts confined to 1 ductal system with the other ductal system completely normal. Both ductal systems filled with contrast medium via a common opening at the major papilla. A rudimentary minor papilla was present, but cannulations were unsuccessful. This unusual anomaly of the ventral pancreas with its embryologic basis, diagnosis, and clinical implications is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48132/1/261_2005_Article_BF01885095.pd

    Diagnostic strategy and timing of intervention in infected necrotizing pancreatitis: an international expert survey and case vignette study

    Get PDF
    AbstractBackgroundThe optimal diagnostic strategy and timing of intervention in infected necrotizing pancreatitis is subject to debate. We performed a survey on these topics amongst a group of international expert pancreatologists.MethodsAn online survey including case vignettes was sent to 118 international pancreatologists. We evaluated the use and timing of fine needle aspiration (FNA), antibiotics, catheter drainage and (minimally invasive) necrosectomy.ResultsThe response rate was 74% (N = 87). None of the respondents use FNA routinely, 85% selectively and 15% never. Most respondents (87%) use a step-up approach in patients with infected necrosis. Walled-off necrosis (WON) is considered a prerequisite for endoscopic drainage and percutaneous drainage by 66% and 12%, respectively. After diagnosing infected necrosis, 55% routinely postpone invasive interventions, whereas 45% proceed immediately to intervention. Lack of consensus about timing of intervention was apparent on day 14 with proven infected necrosis (58% intervention vs. 42% non-invasive) as well as on day 20 with only clinically suspected infected necrosis (59% intervention vs. 41% non-invasive).DiscussionThe step-up approach is the preferred treatment strategy in infected necrotizing pancreatitis amongst expert pancreatologists. There is no uniformity regarding the use of FNA and timing of intervention in the first 2–3 weeks of infected necrotizing pancreatitis

    Evaluation of the Role of Human DNAJAs in the Response to Cytotoxic Chemotherapeutic Agents in a Yeast Model System

    No full text
    Heat-shock proteins (HSPs) play a crucial role in maintaining protein stability for cell survival during stress-induced insults. Overexpression of HSPs in cancer cells results in antiapoptotic activity contributing to cancer cell survival and restricting the efficacy of cytotoxic chemotherapy, which continues to play an important role in the treatment of many cancers, including triple-negative breast cancer (TNBC). First-line therapy for TNBC includes anthracycline antibiotics, which are associated with serious dose-dependent side effects and the development of resistance. We previously identified YDJ1, which encodes a heat-shock protein 40 (HSP40), as an important factor in the cellular response to anthracyclines in yeast, with mutants displaying over 100-fold increased sensitivity to doxorubicin. In humans, the DNAJA HSP40s are homologues of YDJ1. To determine the role of DNAJAs in the cellular response to cytotoxic drugs, we investigated their ability to rescue ydj1Δ mutants from exposure to chemotherapeutic agents. Our results indicate that DNAJA1 and DNAJA2 provide effective protection, while DNAJA3 and DNAJA4 did not. The level of complementation was also dependent on the agent used, with DNAJA1 and DNAJA2 rescuing the ydj1Δ strain from doxorubicin, cisplatin, and heat shock. DNAJA3 and DNAJA4 did not rescue the ydj1Δ strain and interfered with the cellular response to stress when expressed in wild type background. DNAJA1 and DNAJA2 protect the cell from proteotoxic damage caused by reactive oxygen species (ROS) and are not required for repair of DNA double-strand breaks. These data indicate that the DNAJAs play a role in the protection of cells from ROS-induced cytotoxic stress

    Synergistic Effect of Endogenous and Exogenous Aldehydes on Doxorubicin Toxicity in Yeast

    No full text
    Anthracyclines are frequently used to treat many cancers including triple negative breast cancer, which is commonly observed in African-American women (AA), and tend to be more aggressive, carry worse prognoses, and are harder to manage because they lack molecular targets. Although effective, anthracyclines use can be limited by serious side effects and eventually the development of drug resistance. In S. cerevisiae, mutants of HOM6 display hypersensitivity to doxorubicin. HOM6 is required for synthesis of threonine and interruption of the pathway leads to accumulation of the threonine intermediate L-aspartate-semialdehyde. This intermediate may synergize with doxorubicin to kill the cell. In fact, deleting HOM3 in the first step, preventing the pathway to reach the HOM6 step, rescues the sensitivity of the hom6 strain to doxorubicin. Using several S. cerevisiae strains (wild type, hom6, hom3, hom3hom6, ydj1, siz1, and msh2), we determined their sensitivity to aldehydes and to their combination with doxorubicin, cisplatin, and etoposide. Combination of formaldehyde and doxorubicin was most effective at reducing cell survival by 31-fold–39-fold (in wild type cells) relative to doxorubicin and formaldehyde alone. This effect was dose dependent on doxorubicin. Cotreatment with formaldehyde and doxorubicin also showed increased toxicity in anthracycline-resistant strains siz1 and msh2. The hom6 mutant also showed sensitivity to menadione with a 2.5-fold reduction in cell survival. The potential use of a combination of aldehydes and cytotoxic drugs could potentially lead to applications intended to enhance anthracycline-based therapy

    Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process

    No full text
    We have studied the dependence of the electro-optical properties of polymer dispersed liquid crystals ͑PDLC͒ on the ultraviolet ͑UV͒ cure of the solution of monomer and liquid crystal. The kinetics of UV polymerization and its effect on the morphology of the phase separated droplets of liquid crystal determine the switching voltage, response time, and luminance of the PDLC. Using a series of statistically designed experiments, we have mapped the dependence of these responses on the weight fraction of liquid crystal, the temperature of the cell during cure, and light intensity. Temperature and composition are strongly coupled parameters that influence switching voltage, luminance, and response times. Switching voltages are minimized at 4-5 V for an 8 m cell gap over a large region of temperature-composition space. An abrupt transition line occurs through that space. On one side of the transition line, voltage increases linearly either as temperature increases or composition decreases, and on the other side of the line, voltage is constant. Analyses of decay times, the slower response time of the PDLC, show that the times peak along a line of points in temperature-composition space that is close to the transition line for increasing switching voltages. We present these results as contours on the same graphs and relate them to our understanding of the phase separation process in the PDLC mixture
    • …
    corecore