12,657 research outputs found

    Enhancing Bremsstrahlung Production From Ultraintense Laser-Solid Interactions With Front Surface Structures

    Full text link
    We report the results of a combined study of particle-in-cell and Monte Carlo modeling that investigates the production of Bremsstrahlung radiation produced when an ultraintense laser interacts with a tower-structured target. These targets are found to significantly narrow the electron angular distribution as well as produce significantly higher energies. These features combine to create a significant enhancement in directionality and energy of the Bremstrahlung radiation produced by a high-Z converter target. These studies employ short-pulse, high intensity laser pulses, and indicate that novel target design has potential to greatly enhance the yield and narrow the directionality of high energy electrons and γ\gamma-rays. We find that the peak γ\gamma-ray brightness for this source is 6.0×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 10MeV and 1.4×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 100MeV (0.1%\% bandwidth).Comment: arXiv admin note: text overlap with arXiv:1310.328

    First Results for the Solar Neighborhood of the Asiago Red Clump Survey

    Full text link
    The Asiago Red Clump Spectroscopic Survey (ARCS) is an ongoing survey that provides atmospheric parameters, distances and space velocities of a well selected sample of Red Clump stars distributed along the celestial equator. We used the ARCS catalog for a preliminary investigation of the Galactic disk in the Solar Neighborhood, in particular we focused on detection and characterization of moving groups.Comment: 2 pages, 1 figure, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (April 17-22, 2011), C. Reyle, A. Robin, M. Schultheis (eds.

    Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality

    Full text link
    We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G=(V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(\vstar^2 \cdot \log n) time per update, where n=|V|, and \vstar bounds the number of edges that lie on shortest paths through any given vertex. Our APASP algorithm can be used for the decremental computation of betweenness centrality (BC), a graph parameter that is widely used in the analysis of large complex networks. No nontrivial decremental algorithm for either problem was known prior to our work. Our method is a generalization of the decremental algorithm of Demetrescu and Italiano [DI04] for unique shortest paths, and for graphs with \vstar =O(n), we match the bound in [DI04]. Thus for graphs with a constant number of shortest paths between any pair of vertices, our algorithm maintains APASP and BC scores in amortized time O(n^2 \log n) under decremental updates, regardless of the number of edges in the graph.Comment: An extended abstract of this paper will appear in Proc. ISAAC 201

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Principles of Control for Decoherence-Free Subsystems

    Get PDF
    Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians theoretically exist that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFS. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two-physical-qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.Comment: 12 pages, 7 figure

    Uncorrected Tetralogy of Fallot in a 25-Year Old Nigerian African

    Get PDF
    Tetralogy of Fallot is the most common form of cyanotic congenital heart disease. Survival after the age of 12 years without corrective surgery is rare. We present the case of a 25 year-old man with uncorrected tetralogy of Fallot. Possible reasons for the longetivity in this patient are left ventricular hypertrophy and systemic to pulmonary shunting through internal mammary arteries

    The Irreducible Spine(s) of Undirected Networks

    Full text link
    Using closure concepts, we show that within every undirected network, or graph, there is a unique irreducible subgraph which we call its "spine". The chordless cycles which comprise this irreducible core effectively characterize the connectivity structure of the network as a whole. In particular, it is shown that the center of the network, whether defined by distance or betweenness centrality, is effectively contained in this spine. By counting the number of cycles of length 3 <= k <= max_length, we can also create a kind of signature that can be used to identify the network. Performance is analyzed, and the concepts we develop are illurstrated by means of a relatively small running sample network of about 400 nodes.Comment: Submitted to WISE 201

    Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard.

    No full text
    PURPOSE: To evaluate the diagnostic performance of multiparametric (MP) magnetic resonance (MR) imaging for prostate cancer detection by using transperineal template prostate mapping (TTPM) biopsies as the reference standard and to determine the potential ability of MP MR imaging to identify clinically significant prostate cancer. MATERIALS AND METHODS: Institutional review board exemption was granted by the local research ethics committee for this retrospective study. Included were 64 men (mean age, 62 years [range, 40-76]; mean prostate-specific antigen, 8.2 ng/mL [8.2 μg/L] [range, 2.1-43 ng/mL]), 51 with biopsy-proved cancer and 13 suspected of having clinically significant cancer that was biopsy negative or without prior biopsy. MP MR imaging included T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging (1.5 T, pelvic phased-array coil). Three radiologists independently reviewed images and were blinded to results of biopsy. Two-by-two tables were derived by using sectors of analysis of four quadrants, two lobes, and one whole prostate. Primary target definition for clinically significant disease necessary to be present within a sector of analysis on TTPM for that sector to be deemed positive was set at Gleason score of 3+4 or more and/or cancer core length involvement of 4 mm or more. Sensitivity, negative predictive value, and negative likelihood ratio were calculated to determine ability of MP MR imaging to rule out cancer. Specificity, positive predictive value, positive likelihood ratio, accuracy (overall fraction correct), and area under receiver operating characteristic curves were also calculated. RESULTS: Twenty-eight percent (71 of 256) of sectors had clinically significant cancer by primary endpoint definition. For primary endpoint definition (≥ 4 mm and/or Gleason score ≥ 3+4), sensitivity, negative predictive value, and negative likelihood ratios were 58%-73%, 84%-89%, and 0.3-0.5, respectively. Specificity, positive predictive value, and positive likelihood ratios were 71%-84%, 49%-63%, and 2.-3.44, respectively. Area under the curve values were 0.73-0.84. CONCLUSION: Results of this study indicate that MP MR imaging has a high negative predictive value to rule out clinically significant prostate cancer and may potentially have clinical use in diagnostic pathways of men at risk

    Deep Autoencoder for Combined Human Pose Estimation and body Model Upscaling

    Get PDF
    We present a method for simultaneously estimating 3D human pose and body shape from a sparse set of wide-baseline camera views. We train a symmetric convolutional autoencoder with a dual loss that enforces learning of a latent representation that encodes skeletal joint positions, and at the same time learns a deep representation of volumetric body shape. We harness the latter to up-scale input volumetric data by a factor of 4×4 \times, whilst recovering a 3D estimate of joint positions with equal or greater accuracy than the state of the art. Inference runs in real-time (25 fps) and has the potential for passive human behaviour monitoring where there is a requirement for high fidelity estimation of human body shape and pose
    • …
    corecore