96 research outputs found

    Anomaly Cancellation in Supergravity with Fayet-Iliopoulos Couplings

    Get PDF
    We review and clarify the cancellation conditions for gauge anomalies which occur when N=1, D=4 supergravity is coupled to a Kahler non-linear sigma-model with gauged isometries and Fayet-Iliopoulos couplings. For a flat sigma-model target space and vanishing Fayet-Iliopoulos couplings, consistency requires just the conventional anomaly cancellation conditions. A consistent model with non-vanishing Fayet-Iliopoulos couplings is unlikely unless the Green-Schwarz mechanism is used. In this case the U(1) gauge boson becomes massive and the D-term potential receives corrections. A Green-Schwarz mechanism can remove both the abelian and certain non-abelian anomalies in models with a gauge non-invariant Kahler potential.Comment: 27 page

    From Fake Supergravity to Superstars

    Get PDF
    The fake supergravity method is applied to 5-dimensional asymptotically AdS spacetimes containing gravity coupled to a real scalar and an abelian gauge field. The motivation is to obtain bulk solutions with R x S^3 symmetry in order to explore the AdS/CFT correspondence when the boundary gauge theory is on R x S^3. A fake supergravity action, invariant under local supersymmetry through linear order in fermion fields, is obtained. The gauge field makes things more restrictive than in previous applications of fake supergravity which allowed quite general scalar potentials. Here the superpotential must take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom is the choice of the constant k. The fermion transformation rules of fake supergravity lead to fake Killing spinor equations. From their integrability conditions, we obtain first order differential equations which we solve analytically to find singular electrically charged solutions of the Lagrangian field equations. A Schwarzschild mass term can be added to produce a horizon which shields the singularity. The solutions, which include "superstars", turn out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure

    Absorption by Threebranes and the AdS/CFT Correspondence

    Get PDF
    In the first part of this talk I discuss two somewhat different supergravity approaches to calculating correlation functions in strongly coupled Yang-Mills theory. The older approach relates two-point functions to cross-sections for absorption of certain incident quanta by threebranes. In this approach the normalization of operators corresponding to the incident particles is fixed unambiguously by the D3-brane DBI action. By calculating absorption cross-sections of all partial waves of the dilaton we find corresponding two-point functions at strong `t Hooft coupling and show that they are identical to the weak coupling results. The newer approach to correlation functions relates them to boundary conditions in AdS space. Using this method we show that for a certain range of negative mass-squared there are two possible operator dimensions corresponding to a given scalar field in AdS, and indicate how to calculate correlation functions for either of these choices. In the second part of the talk I discuss an example of AdS/CFT duality which arises in the context of type 0 string theory. The CFT on N coincident electric and magnetic D3-branes is argued to be stable for sufficiently weak `t Hooft coupling. It is suggested that its transition to instability at a critical coupling is related to singularity of planar diagrams.Comment: 14 pages, LaTeX; Talk at Strings '99, Potsdam, German

    A Constrained Standard Model from a Compact Extra Dimension

    Full text link
    A SU(3) \times SU(2) \times U(1) supersymmetric theory is constructed with a TeV sized extra dimension compactified on the orbifold S^1/(Z_2 \times Z_2'). The compactification breaks supersymmetry leaving a set of zero modes which correspond precisely to the states of the 1 Higgs doublet standard model. Supersymmetric Yukawa interactions are localized at orbifold fixed points. The top quark hypermultiplet radiatively triggers electroweak symmetry breaking, yielding a Higgs potential which is finite and exponentially insensitive to physics above the compactification scale. This potential depends on only a single free parameter, the compactification scale, yielding a Higgs mass prediction of 127 \pm 8 GeV. The masses of the all superpartners, and the Kaluza-Klein excitations are also predicted. The lightest supersymmetric particle is a top squark of mass 197 \pm 20 GeV. The top Kaluza-Klein tower leads to the \rho parameter having quadratic sensitivity to unknown physics in the ultraviolet.Comment: 31 pages, Latex, 2 eps figures, minor correction

    Big Bang Models in String Theory

    Get PDF
    These proceedings are based on lectures delivered at the "RTN Winter School on Strings, Supergravity and Gauge Theories", CERN, January 16 - January 20, 2006. The school was mainly aimed at Ph.D. students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.Comment: 44 pages, 18 figures; v2: misprints in section 4.2 fixed (corrects published version), reference adde
    • …
    corecore