20 research outputs found

    Effects of rundown in soil hydraulic condition on crop productivity in south-eastern Queensland - a simulation study

    Get PDF
    Declining soil organic matter levels because of cropping have been shown to reduce crop growth and yield, but the effects of changing infiltration and soil hydraulic properties on crop productivity have not been widely evaluated. Cropping systems in south-eastern Queensland have, in the past, involved intense tillage, trafficking with heavy machinery, and changed organic matter cycling, affecting soil aggregation, permeability, water-holding characteristics, and organic matter. The aim of this paper is to determine how important infiltration and soil hydraulic condition has been to the water balance, crop growth, and yield in the past, and may be in the future if management is not changed. Change in physical and chemical condition of the 5 most commonly cropped soils in south-east Queensland (Sodosols, Vertosols with ≤55% clay, Vertosols with >55% clay, Red Ferrosols and Red Chromosols/Kandosols) was measured over 0–70 years of cropping and estimated up to 200 years. The APSIM model was used to predict effects of changing soil condition in a rain-fed, fertilised, wheat-summer fallow cropping system with intense tillage. Decline in infiltration, restricted internal redistribution of water, and increased evaporation reduced water supply to the crop, causing simulated yield to decline by 29, 38, 25, 17, and 13% for the 5 soils, respectively, after 50 years of cropping. Gross margin declined at a faster rate, falling by 36, 50, 40, 20, and 21%, respectively after 50 years because of increasing fertiliser requirement to compensate for declining soil fertility. Crop productivity on most soils continued to steadily decline as period of cropping increased to 200 years. To arrest or reverse this downward trend, it is likely that substantial changes to current cropping systems will be needed, including reducing tillage and trafficking, and improving organic matter levels

    Simulating infiltration and the water balance in cropping systems with APSIM-SWIM

    Get PDF
    We test APSIM-SWIM's ability to simulate infiltration and interactions between the soil water balance and grain crop growth using soil hydraulic properties derived from independent, point measurements. APSIMSWIM is a continuous soil-crop model that simulates infiltration, surface crusting, and soil condition in more detail than most other soil-crop models. Runoff, soil water, and crop growth information measured at sites in southern Queensland was used to test the model. Parameter values were derived directly from soil hydraulic properties measured using rainfall simulators, disc permeameters and ponded rings, and pressure plate apparatus. In general, APSIM-SWIM simulated infiltration, runoff, soil water and the water balance, and yield as accurately and reliably as other soil crop models, indicating the model is suitable for evaluating effects of infiltration and soil-water relations on crop growth. Increased model detail did not hinder application, instead improving parameter transferability and utility, but improved methods of characterising crusting, soil hydraulic conductivity, and macroporosity under field conditions would improve ease of application, prediction accuracy, and reliability of the model. Model utility and accuracy would benefit from improved representation of temporal variation in soil condition, including effects of tillage and consolidation on soil condition and bypass flow in cracks

    Tillage and the environment in sub-tropical Australia-Tradeoffs and challenges

    No full text
    Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available

    Reflections on collectively working toward sustainability: indicators for indicators!

    Get PDF
    A variety of indicators have been developed and applied by farmers and scientists for the northern cereal belt. A general overview is presented of 'What are we trying to monitor?' followed by some example concepts; erosion hazard, salinity hazard, nutrient balance, production efficiency and participatory learning. These examples illustrate the complexity of indicator application and their dependence on context, purpose and scale. Emphasis is given to providing a rationale for developing indicators that focus on 'soft' system status (e.g. behaviour) as well as 'hard' system status. The propositions put forward are that indicators need to be integrated with the development of improved management systems, and that land managers (and community) as a collective, are key to this process. Some frequently asked questions about indicator development and application are responded to. Some 'Indicators for Indicators' that we have found useful in aiding indicator development, particularly in participatory fora are presented

    Atrazine degradation and transport in runoff on a Black Vertosol

    No full text
    In Australia communities are concerned about atrazine being detected in drinking water supplies. It is important to understand mechanisms by which atrazine is transported from paddocks to waterways if we are to reduce movement of agricultural chemicals from the site of application. Two paddocks cropped with grain sorghum on a Black Vertosol were monitored for atrazine, potassium chloride (KCl) extractable atrazine, desethylatrazine (DEA), and desisopropylatrazine (DIA) at 4 soil depths (0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m) and in runoff water and runoff sediment. Atrazine + DEA + DIA (total atrazine) had a half-life in soil of 16-20 days, more rapid dissipation than in many earlier reports. Atrazine extracted in dilute potassium chloride, considered available for weed control, was initially 34% of the total and had a half-life of 15-20 days until day 30, after which it dissipated rapidly with a half life of 6 days. We conclude that, in this region, atrazine may not pose a risk for groundwater contamination, as only 0.5% of applied atrazine moved deeper than 0.20 m into the soil, where it dissipated rapidly. In runoff (including suspended sediment) atrazine concentrations were greatest during the first runoff event (57 days after application) (85 μg/L) and declined with time. After 160 days, the total atrazine lost in runoff was 0.4% of the initial application. The total atrazine concentration in runoff was strongly related to the total concentration in soil, as expected. Even after 98% of the KCl-extractable atrazine had dissipated (and no longer provided weed control), runoff concentrations still exceeded the human health guideline value of 40 μg/L. For total atrazine in soil (0-0.05 m), the range for coefficient of soil sorption (Kd) was 1.9-28.4 mL/g and for soil organic carbon sorption (KOC) was 100-2184 mL/g, increasing with time of contact with the soil and rapid dissipation of the more soluble, available phase. Partition coefficients in runoff for total atrazine were initially 3, increasing to 32 and 51 with time, values for DEA being half these. To minimise atrazine losses, cultural practices that maximise rain infiltration, and thereby minimise runoff, and minimise concentrations in the soil surface should be adopted

    Wheel traffic and tillage effects on runoff and crop yield

    No full text
    Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor. Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil. Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution. Keywords: Controlled traffic; Conservation tillage; Soil compaction; Infiltration; Runoff; Crop yield; Soil wate

    The Brigalow Catchment Study: II. Clearing brigalow (Acacia harpophylla) for cropping or pasture increases runoff

    Get PDF
    The Brigalow Catchment Study (BCS) was established to determine the impact on hydrology when brigalow land is cleared for cropping and grazing. The paired catchment study was commenced in 1965 using catchments of approximately 15 ha, with natural vegetation dominated by brigalow scrub (Acacia harpophylla). Three contiguous catchments were selected near Theodore in central Queensland to represent the extensive brigalow bioregion of central and southern Queensland and northern New South Wales (~40 Mha). The hydrology of the 3 catchments was characterised during a 17-year calibration period (1965–81). The catchments were considered hydrologically similar, with sufficient data available for an empirical comparison between catchments. In 1982, two of the catchments were cleared, with one developed for cropping and the other sown to improved pasture. The third catchment was used as an uncleared control. Hydrologic characteristics were then compared for the following 21 years. In their virgin state, the catchments behaved similarly, with average annual runoff being 5% of annual rainfall. Once cleared, total runoff from the cropping catchment increased to 11% of annual rainfall and total runoff from the pasture catchment increased to 9% of annual rainfall; however, timing of the individual runoff events varied between land uses. In order to confirm that changes in hydrology were a function of land use and not just seasonal variability or sampling error, several analytic techniques were used: a simple comparison of runoff totals, comparison of events, comparison of probability of exceedance for daily runoff, and comparison of predicted and observed runoff using a water balance modelling approach

    Planning and facilitating a 'negotiated learning and action system': participatory research to improve soil management practices on Indian Vertisols and Alfisols

    No full text
    This chapter illustrates a negotiated learning and action system research process based on the notions of participatory learning and systems thinking to provide insights gained from planning and facilitating this learning system. The need for participatory research in Vertisol and Alfisol management in India is highlighted. To illustrate the components of action research, selected parts of the participatory research are illustrated in terms of the planning, actions, observations and reflections that took place during the research process. To design the participatory research process, a '5P framework' was developed consisting of paradigm, purpose, principles, people and process

    Rainfall and streamflow response to El Niño Southern Oscillation: a case study in a semiarid catchment, Australia.

    No full text
    This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0-3 month lead time, compared to rainfall distribution
    corecore