10 research outputs found

    A comparison of two wave energy converters’ power performance and mooring fatigue characteristics – One WEC vs many WECs in a wave park with interaction effects

    Get PDF
    The production of renewable energy is key to satisfying the increasing demand for energy without further increasing pollution. Harnessing ocean energy from waves has attracted attention due to its high energy density. This study compares two generations of floating heaving point absorber WEC, WaveEL 3.0 and WaveEL 4.0, regarding their power performance and mooring line fatigue characteristics, which are essential in, e.g., LCoE calculations. The main differences between the two WECs are the principal dimensions and minor differences in their geometries. The DNV software SESAM was used for simulations and analyses of these WECs in terms of buoy heave motion resonances for maximising energy harvesting, motion characteristics, mooring line forces, fatigue of mooring lines, and hydrodynamic power production. The first part of the study presents results from simulations of unit WEC in the frequency domain and in the time domain for regular wave and irregular sea state conditions. A verification of the two WECs’ motion responses and axial mooring line forces is made against measurement data from a full-scale installation. In the second part of the study, the influence of interaction effects is investigated when the WECs are installed in wave parks. The wave park simulations used a fully-coupled non-linear method in SESAM that calculates the motions of the WECs and the mooring line forces simultaneously in the time domain. The amount of fatigue damage accumulated in the mooring lines was calculated using a relative tension-based fatigue analysis method and the rainflow counting method. Several factors that influence the power performance of the wave park and the accumulated fatigue damage of the mooring lines, for example, the WEC distance of the wave park, the sea state conditions, and the direction of incoming waves, are simulated and discussed. The study\u27s main conclusion is that WaveEL 4.0, which has a longer tube than WaveEL 3.0, absorbs more hydrodynamic energy due to larger heave motions and more efficient power production. At the same time, the accumulated fatigue damage in the moorings is lower compared to WaveEL 3.0 if the distance between the WECs in the wave park is not too short. Its motions in the horizontal plane are larger, which may require a larger distance between the WEC units in a wave park to avoid losing efficiency due to hydrodynamic interaction effects

    Modelling Deep Green tidal power plant using large eddy simulations and the actuator line method

    Get PDF
    The Deep Green technique for tidal power generation is suitable for moderate flows which is attractive since larger areas for tidal energy generation hereby can be used. It operates typically at mid-depth and can be seen as a “flying” kite with a turbine and generator attached underneath. It moves in a lying figure-eight path almost perpendicular to the tidal flow. Large eddy simulations and an adaption of the actuator line method (in order to describe arbitrary paths) are used to study the turbulent flow with and without Deep Green for a specific site. This methodology can in later studies be used for e.g. array analysis that include Deep Green interaction. It is seen that Deep Green creates a unique wake composed of two velocity deficit zones with increased velocity in each wake core. The flow has a tendency to be directed downwards which results in locally increased bottom shear. The persistence of flow disturbances of Deep Green can be scaled with its horizontal path width, Dy, with a velocity deficit of 5% at approximately 8–10Dy downstream of the power plant. The turbulence intensity and power deficit are approximately two times the undisturbed value and 10%, respectively, at 10Dy

    Tidal power plant simulations using large eddy simulation (LES) and the actuator line method (ALM)

    Get PDF
    The share of the renewable energy in the gobal energy mix is to be increased according to the sustainable development goals of the UN. Tidal energy can here potentially play a substantial role for the electric power generation. The tidal power plant Deep Green developed by Minesto uses a novel technology with a “flying” kite that, with its attached turbine, sweeps the tidal stream with a velocity several times higher than he mean flow. Eventually these power plants will form arrays requiring knowledge of (1) the interaction between individual power plants as well as (2) how the power plants and the arrays will influence the surrounding environment. The tidally oscillating turbulent boundary layer flow is in the present study analyzed using Large Eddy Simulations (LES) utilizing two different modeling techniques (pseudo-spectral and finite volume method). The boundary layer flow is analyzed both undisturbed and with a sweeping tidal power plant. The power plant is modeled using the Actuator Line Method (ALM). This method has been reformulated in order to be able to take arbitrary pathways of the actuator line into account. The results for the undisturbed flow simulations show, e.g., variations of the turbulence intensity depending on pre- or post-tidal peak flow for equivalent volume mean flow. The results for the modeled power plant show, e.g., how the wake flow downstream of the power plant that can be related to the size of the pathway size

    Large eddy simulation of the tidal power plant Deep Green using the actuator line method

    Get PDF
    Tidal energy has the potential to provide asubstantial part of the sustainable electric power generation. Thetidal power plant developed by Minesto, called Deep Green, is anovel technology using a ‘flying’ kite with an attached turbine,moving at a speed several times higher than the mean flow.Multiple Deep Green power plants will eventually form arrays,which requires knowledge of both flow interactions betweenindividual devices and how the array influences the surroundingenvironment. The present study uses large eddy simulations(LES) and an actuator line model (ALM) to analyze theoscillating turbulent boundary layer flow in tidal currentswithout and with a Deep Green power plant. We present themodeling technique and preliminary results so far

    Ecological role of a seaweed secondary metabolite for a colonizing bacterial community

    No full text
    Bacteria associated with seaweeds can both harm and benefit their hosts. Many seaweed species are known to produce compounds that inhibit growth of bacterial isolates, but the ecological role of seaweed metabolites for the associated bacterial community structure is not well understood. In this study the response of a colonizing bacterial community to the secondary metabolite (1,1,3,3-tetrabromo-2-heptanone) from the red alga Bonnemaisonia hamifera was investigated by using field panels coated with the metabolite at a range of concentrations covering those measured at the algal surface. The seaweed metabolite has previously been shown to have antibacterial effects. The metabolite significantly affected the natural fouling community by (i) altering the composition, (ii) altering the diversity by increasing the evenness and (iii) decreasing the density, as measured by terminal restriction fragment length polymorphism in conjunction with clone libraries of the 16S rRNA genes and by bacterial enumeration. No single major bacterial taxon (phylum, class) was particularly affected by the metabolite. Instead changes in community composition were observed at a more detailed phylogenetic level. This indicates a broad specificity of the seaweed metabolite against bacterial colonization, which is supported by the observation that the bacterial density was significantly affected at a lower concentration (0.02 ÎŒg cm -2) than the composition (1-2.5 ÎŒg cm -2) and the evenness (5 ÎŒg cm -2) of the bacterial communities. Altogether, the results emphasize the role of secondary metabolites for control of the density and structure of seaweed-associated bacterial communities
    corecore