3,584 research outputs found
Dynamics of Polymers: a Mean-Field Theory
We derive a general mean-field theory of inhomogeneous polymer dynamics; a
theory whose form has been speculated and widely applied, but not heretofore
derived. Our approach involves a functional integral representation of a
Martin-Siggia-Rose type description of the exact many-chain dynamics. A saddle
point approximation to the generating functional, involving conditions where
the MSR action is stationary with respect to a collective density field
and a conjugate MSR response field , produces the desired dynamical
mean-field theory. Besides clarifying the proper structure of mean-field theory
out of equilibrium, our results have implications for numerical studies of
polymer dynamics involving hybrid particle-field simulation techniques such as
the single-chain in mean-field method (SCMF)
Hydrodynamic Self-Consistent Field Theory for Inhomogeneous Polymer Melts
We introduce a mesoscale technique for simulating the structure and rheology
of block copolymer melts and blends in hydrodynamic flows. The technique
couples dynamic self consistent field theory (DSCFT) with continuum
hydrodynamics and flow penalization to simulate polymeric fluid flows in
channels of arbitrary geometry. We demonstrate the method by studying phase
separation of an ABC triblock copolymer melt in a sub-micron channel with
neutral wall wetting conditions. We find that surface wetting effects and shear
effects compete, producing wall-perpendicular lamellae in the absence of flow,
and wall-parallel lamellae in cases where the shear rate exceeds some critical
Weissenberg number.Comment: Revised as per peer revie
Coherent States Formulation of Polymer Field Theory
We introduce a stable and efficient complex Langevin (CL) scheme to enable
the first numerical simulations of the coherent-states (CS) formulation of
polymer field theory. In contrast with Edwards' well known auxiliary-field (AF)
framework, the CS formulation does not contain an embedded non-linear,
non-local functional of the auxiliary fields, and the action of the field
theory has a fully explicit, finite-order and semi-local polynomial character.
In the context of a polymer solution model, we demonstrate that the new CS-CL
dynamical scheme for sampling fluctuations in the space of coherent states
yields results in good agreement with now-standard AF simulations. The
formalism is potentially applicable to a broad range of polymer architectures
and may facilitate systematic generation of trial actions for use in
coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure
Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
We develop a theory to describe the reorientation phenomena in the lamellar
phase of block copolymer melt under reciprocating shear flow. We show that
similar to the steady-shear, the oscillating flow anisotropically suppresses
fluctuations and gives rise to the parallel-perpendicular orientation
transition. The experimentally observed high-frequency reverse transition is
explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR
Tilt grain boundary instabilities in three dimensional lamellar patterns
We identify a finite wavenumber instability of a 90 tilt grain
boundary in three dimensional lamellar phases which is absent in two
dimensional configurations. Both a stability analysis of the slowly varying
amplitude or envelope equation for the boundary, and a direct numerical
solution of an order parameter model equation are presented. The instability
mode involves two dimensional perturbations of the planar base boundary, and is
suppressed for purely one dimensional perturbations. We find that both the most
unstable wavenumbers and their growth rate increase with , the
dimensionless distance away from threshold of the lamellar phase.Comment: 11 pages, 7 figures, to be published in Phys. Rev.
Reliability considerations in the design, assembly, and testing of the mariner iv power system
Reliability considerations in design, assembly, and testing of Mariner IV power syste
Microphase separation in polyelectrolytic diblock copolymer melt : weak segregation limit
We present a generalized theory of microphase separation for charged-neutral
diblock copolymer melt. Stability limit of the disordered phase for salt-free
melt has been calculated using Random Phase Approximation (RPA) and
self-consistent field theory (SCFT). Explicit analytical free energy
expressions for different classical ordered microstructures (lamellar, cylinder
and sphere) are presented. We demonstrate that chemical mismatch required for
the onset of microphase separation () in charged-neutral
diblock melt is higher and the period of ordered microstructures is lower than
those for the corresponding neutral-neutral diblock system. Theoretical
predictions on the period of ordered structures in terms of Coulomb
electrostatic interaction strength, chain length, block length, and the
chemical mismatch between blocks are presented. SCFT has been used to go beyond
the stability limit, where electrostatic potential and charge distribution are
calculated self-consistently. Stability limits calculated using RPA are in
perfect agreement with the corresponding SCFT calculations. Limiting laws for
stability limit and the period of ordered structures are presented and
comparisons are made with an earlier theory. Also, transition boundaries
between different morphologies have been investigated
The effect of shear on persistence in coarsening systems
We analytically study the effect of a uniform shear flow on the persistence
properties of coarsening systems. The study is carried out within the
anisotropic Ohta-Jasnow-Kawasaki (OJK) approximation for a system with
nonconserved scalar order parameter. We find that the persistence exponent
theta has a non-trivial value: theta = 0.5034... in space dimension d=3, and
theta = 0.2406... for d=2, the latter being exactly twice the value found for
the unsheared system in d=1. We also find that the autocorrelation exponent
lambda is affected by shear in d=3 but not in d=2.Comment: 6 page
Investigation of high-performance insulation application problems
The design, fabrication, and performance of a practical, flightworthy, multilayer insulation (MLI) system for a Modular Nuclear Vehicle (MNV) LH2 propellant tank is presented. An MLI system is now available. It may be applied to the MNV or any other space vehicle requiring MLI for thermal control. This design concept was adapted for an MLI installation that covered and was successfully flown on the Skylab forward dome
Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow
We generalize the earlier theory by Fredrickson [J. Rheol. v.38, 1045 (1994)]
to study the orientational behaviour of the hexagonal phase of diblock
copolymer melt subjected to steady shear flow. We use symmetry arguments to
show that the orientational ordering in the hexagonal phase is a much weaker
effect than in the lamellae. We predict the parallel orientation to be stable
at low and the perpendicular orientation at high shear rates. Our analysis
reproduces the experimental results by Tepe et al. [Macromolecules v.28, 3008
(1995)] and explains the difficulties in experimental observation of the
different orientations in the hexagonal phase.Comment: 21 pages, 6 eps figures, submitted to Physical Review
- …