58 research outputs found

    The thyroid axis just got more complicated

    Full text link

    CLINICAL MANAGEMENT OF THYROID DISEASE

    No full text

    Clinical management of thyroid disease

    No full text
    xi, 423 p. ; 26 cm

    A new medical therapy for Cushing disease?

    No full text
    Members of the ErbB family of cell surface tyrosine kinase receptors are important targets for cancer treatment because they frequently contribute to the pathogenesis of malignancy. In this issue of the JCI, Fukuoka et al. generate data that suggest that using a tyrosine kinase inhibitor (TKI) against epidermal growth factor receptor (EGFR; also known as ErbB1) may be a novel approach for treating patients with hypercortisolemia due to pituitary corticotroph adenomas (Cushing disease). While surgical resection remains the cornerstone of treatment for individuals with such tumors, this study suggests that TKIs could perhaps be used to reduce tumor size prior to surgery or to treat recurrent disease after surgery

    Differential Metabolism of Glycerol Based on Oral versus Intravenous Administration in Humans

    No full text
    Glycerol can be metabolized to glucose via gluconeogenesis or lactate via glycolysis. It is unknown if glycerol is metabolized similarly in the portal and systemic circulations in humans. Eight metabolically healthy overnight-fasted individuals received equimolar amounts of 13C3-glycerol orally and intravenously on two separate occasions with serial blood draws over four hours. Serum samples underwent liquid chromatography–mass spectrometry analysis. Oral 13C3-glycerol administration led to higher average serum glucose enrichment than intravenous administration (5.02 ± 1.43 versus 4.07 ± 0.79%, p = 0.009). In contrast, intravenous 13C3-glycerol administration yielded higher average serum lactate enrichment than oral administration (5.67 ± 0.80 versus 4.85 ± 1.30%, p = 0.032). Peak serum glucose enrichment was also higher with oral administration (9.37 ± 2.93 versus 7.12 ± 1.28%, p = 0.010). Glycerol metabolism across the portal and systemic circulations is not congruent. Orally administered labeled glycerol led to greater labeled glucose production, while intravenously administration yielded greater lactate production. These data support direct glycerol to lactate conversion in humans

    Clinical management of thyroid disease/ Edit. : Fredric E. Wondisford and Sally Radovick

    No full text
    xi. 423 hal.: ill., tab.; 28c

    Clinical management of thyroid disease/ Edit. : Fredric E. Wondisford and Sally Radovick

    No full text
    xi. 423 hal.: ill., tab.; 28c

    05205.q.FInal

    No full text
    Patients with resistance to thyroid hormone (RTH) exhibit elevated thyroid hormone levels and inappropriate thyrotropin (thyroid-stimulating hormone, or TSH) production. The molecular basis of this disorder resides in the dominant inhibition of endogenous thyroid hormone receptors (TRs) by a mutant receptor. To determine the relative contributions of pituitary versus hypothalamic resistance to the dysregulated production of thyroid hormone in these patients, we developed a transgenic mouse model with pituitary-specific expression of a mutant TR (∆337T). The equivalent mutation in humans is associated with severe generalized RTH. Transgenic mice developed profound pituitary resistance to thyroid hormone, as demonstrated by markedly elevated baseline and non-triodothyronine (T 3 )-suppressible serum TSH and pituitary TSH-β mRNA. Serum thyroxine (T 4 ) levels were only marginally elevated in transgenic mice and thyrotropin-releasing hormone (TRH) gene expression in the paraventricular hypothalamus was downregulated. After TRH administration, T 4 concentrations increased markedly in transgenic, but not in wild-type mice. Transgenic mice rendered hypothyroid exhibited a TSH response that was only 30% of the response observed in wild-type animals. These findings indicate that pituitary expression of this mutant TR impairs both T 3 -mediated suppression and T 3 -independent activation of TSH production in vivo. The discordance between basal TSH and T 4 levels and the reversal with TRH administration demonstrates that resistance at the level of both the thyrotroph and the hypothalamic TRH neurons are required to elevate thyroid hormone levels in patients with RTH

    Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes

    No full text
    Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns. As a result, MFA can tell the relative contributions of converging metabolic pathways only when these pathways make substrates in different labeling patterns for the shared product. This is the fundamental principle guiding the design of isotope labeling experiment for MFA including tracer selection. In addition, we will also discuss the basic biochemical assumptions of MFA, and we will show the flux-solving procedure and result evaluation. Finally, we will highlight the link between isotopically stationary and nonstationary flux analysis
    • …
    corecore