11 research outputs found
Stochastic particle packing with specified granulometry and porosity
This work presents a technique for particle size generation and placement in
arbitrary closed domains. Its main application is the simulation of granular
media described by disks. Particle size generation is based on the statistical
analysis of granulometric curves which are used as empirical cumulative
distribution functions to sample from mixtures of uniform distributions. The
desired porosity is attained by selecting a certain number of particles, and
their placement is performed by a stochastic point process. We present an
application analyzing different types of sand and clay, where we model the
grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The
parameters from the resulting best fit are used to generate samples from the
theoretical distribution, which are used for filling a finite-size area with
non-overlapping disks deployed by a Simple Sequential Inhibition stochastic
point process. Such filled areas are relevant as plausible inputs for assessing
Discrete Element Method and similar techniques
Comparação de modelos matemáticos para o traçado de curvas granulométricas Comparison of mathematical models for fitting particle-size distribution curves
A distribuição granulométrica de partÃculas sólidas é essencial para as áreas de material de construção, mecânica dos solos, fÃsica dos solos, hidrossedimentologia, entre outras. As técnicas utilizadas na avaliação da distribuição granulométrica de amostras resultam em valores pontuais, dependendo de posterior interpolação para o traçado da curva granulométrica e a obtenção de diâmetros caracterÃsticos especÃficos. A transformação de valores pontuais em funções contÃnuas pode ser realizada por meio de modelos matemáticos. Entretanto, há poucos estudos com a finalidade de determinar o melhor modelo para o ajuste de curvas granulométricas. O objetivo deste trabalho foi testar e comparar 14 diferentes modelos passÃveis de utilização no traçado da curva granulométrica de partÃculas sólidas com base em quatro pontos medidos. O parâmetro de comparação entre os modelos foi a soma de quadrado dos erros entre os valores medidos e calculados. Os modelos mais recomendados no traçado da curva granulométrica, a partir de quatro pontos, são os de Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P e Morgan et al. 3P, todos com três parâmetros de ajuste.<br>Particle-size distribution is fundamental for characterizing construction materials, soil mechanics, soil physics, sediment-flux in rivers, and others. The techniques used to determine the particle-size distribution of a sample are point-wise, demanding posterior interpolation to fit the complete particle-size distribution curve and to obtain values of specific diameters. The transformation of discrete points into continuous functions can be made by mathematical models. However, there are few studies to determine the best model to fit particle-size distribution curves. The objective of this work was to test and compare 14 different models with feasibility to fit the cumulative particle-size distribution curve based on four measured points. The parameter used to compare the models was the sum of the square errors between the measured and calculated values. The most recommendable models to fit the particle-size distribution curve, based on four discrete points, are Skaggs et al. 3P, Lima & Silva 3P, Weibull 3P, and Morgan et al. 3P, all using three fitting parameters