84 research outputs found

    PROMISCUOS COUPLING AND INVOLVEMENT OF PROTEIN KINASE C AND EXTRACELLULAR SIGNAL-REGULATED KINASE 1/2 IN THE ADENOSINE A(1) RECEPTOR SIGNALLING IN MAMMALIAN SPERMATOZOA

    No full text
    Mammalian spermatozoa require a maturational event after ejaculation that allows them to acquire the capacity for fertilisation. This process occurs spontaneously during the transit through the female reproductive tract where spermatozoa are in contact with micromolar concentrations of adenosine that might act as a capacitative effector. This study shows that the adenosine A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, can induce capacitation, i.e., the ability to undergo the acrosome reaction and to become fertile. This receptor, already known to be bound to Galpha(i2), is also bound to G(q/11). These G proteins are functional in the signalling pathway elicited by the A1 receptor and correlate with the multiple intracellular events that follow its activation. The use of protein kinase C isoform inhibitors and MEK inhibitors, resulting in the abolition of the biological response to the selective agonist, indicates the involvement of protein kinase C and MEK in its signalling. In agonist-treated spermatozoa an extracellular calcium influx, involvement of alpha and gamma PKC isoforms and transient phosphorylation of ERK1/2 have been observed. Our results, besides showing that adenosine A1 receptor prompts mammalian spermatozoa to undergo the acrosome reaction hence supporting a role for adenosine as agent for fertilisation, show that 2-chloro-N6-cyclopentyladenosine triggers signalling mechanisms that involve both Galpha(i2) and G(q/11), extracellular calcium influx, modulation of classical Ca2+-dependent PCK isoforms and up-regulation of the ERK1/2 phosphorylation

    Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC.

    No full text
    A2A adenosine and CB1 cannabinoid receptors are highly expressed in the central nervous system, where they modulate numerous physiological processes including adaptive responses to drugs of abuse. Both purinergic and cannabinoid systems interact with dopamine neurotransmission (through A2A and CB1 receptors, respectively). Changes in dopamine neurotransmission play an important role in addictive-related behaviours. In this study, we investigated the contribution of A2A adenosine receptors in several behavioural responses of Delta9-tetrahydrocannabinol (THC) related to its addictive properties, including tolerance, physical dependence and motivational effects. For this purpose, we first investigated acute THC responses in mice lacking A2A adenosine receptors. Antinociception, hypolocomotion and hypothermia induced by acute THC administration remained unaffected in mutant mice. Chronic THC treatment developed similar tolerance to these acute effects in wild-type and A2A-knockout mice. However, differences in the body weight pattern were found between genotypes during such chronic treatment. Interestingly, the somatic manifestations of SR141716A-precipitated THC withdrawal were significantly attenuated in mutant mice. The motivational responses of THC were also evaluated by using the place-conditioning paradigm. A significant reduction of THC-induced rewarding and aversive effects was found in mice lacking A2A adenosine receptors in comparison with wild-type littermates. Binding studies revealed that these behavioural changes were not associated with any modification in the distribution and/or functional activity of CB1 receptors in knockout mice. Therefore, this study shows, for the first time, a specific involvement of A2A receptors in the addictive-related properties of cannabinoids.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe
    corecore