444 research outputs found
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
The Reinstatement Of Hydropuntia Montagne (Gracilariaceae, Rhodophyta)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149772/1/tax00982.pd
Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation
A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems
- âŚ