5 research outputs found

    Application of Next-Generation Sequencing in the Era of Precision Medicine

    Get PDF
    Next-generation sequencing (NGS) technologies represented the next step in the evolution of DNA sequencing, through the generation of thousands to millions of DNA sequences in a short time. The relatively fast emergence and success of NGS in research revolutionized the field of genomics and medical diagnosis. The traditional medicine model of diagnosis has changed to one precision medicine model, leading to a more accurate diagnosis of human diseases and allowing the selection of molecular target drugs for individual treatment. This chapter attempts to review the main features of NGS technique (concepts, data analysis, applications, advances and challenges), starting with a brief history of DNA sequencing followed by a comprehensive description of most used NGS platforms. Further topics will highlight the application of NGS towards routine practice, including variant detection, whole-exome sequencing (WES), whole-genome sequencing (WGS), custom panels (multi-gene), RNA-seq and epigenetic. The potential use of NGS in precision medicine is vast and a better knowledge of this technique is necessary for an efficacious implementation in the clinical workplace. A centralized chapter describing the main NGS aspects in the clinic could help beginners, scientists, researchers and health care professionals, as they will be responsible for translating genomic data into genomic medicine

    Epidemiological Surveillance Reveals the Rise and Establishment of the Omicron SARS-CoV-2 Variant in Brazil

    No full text
    The introduction of SARS-CoV-2 variants of concern (VOCs) in Brazil has been associated with major impacts on the epidemiological and public health scenario. In this study, 291,571 samples were investigated for SARS-CoV-2 variants from August 2021 to March 2022 (the highest peak of positive cases) in four geographical regions of Brazil. To identify the frequency, introduction, and dispersion of SARS-CoV-2 variants in 12 Brazilian capitals, VOCs defining spike mutations were identified in 35,735 samples through genotyping and viral genome sequencing. Omicron VOC was detected in late November 2021 and replaced the Delta VOC in approximately 3.5 weeks. We estimated viral load differences between SARS-CoV-2 Delta and Omicron through the evaluation of the RT-qPCR cycle threshold (Ct) score in 77,262 samples. The analysis demonstrated that the Omicron VOC has a lower viral load in infected patients than the Delta VOC. Analyses of clinical outcomes in 17,586 patients across the country indicated that individuals infected with Omicron were less likely to need ventilatory support. The results of our study reinforce the importance of surveillance programs at the national level and showed the introduction and faster dispersion of Omicron over Delta VOC in Brazil without increasing the numbers of severe cases of COVID-19

    Dynamics of Early Establishment of SARS-CoV-2 VOC Omicron Lineages in Minas Gerais, Brazil

    No full text
    Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG

    Monitoring the Establishment of VOC Gamma in Minas Gerais, Brazil: A Retrospective Epidemiological and Genomic Surveillance Study

    No full text
    Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March–April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG’s 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks

    The Omicron Lineages BA.1 and BA.2 (<i>Betacoronavirus</i> SARS-CoV-2) Have Repeatedly Entered Brazil through a Single Dispersal Hub

    No full text
    Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation
    corecore