129 research outputs found
Compositions and Methods for Detecting and Treating Atherosclerosis
Methods for detecting atherosclerotic plaque and quantifying the amount of Group V sPLA2 in plasma are disclosed. These methods can be used to assess the risk of cardiovascular pathology in a patient
Serum Amyloid A Is Not Incorporated into HDL during HDL Biogenesis
Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA\u27s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis
Serum Amyloid A3 is a High Density Lipoprotein-Associated Acute-Phase Protein
Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥ 1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (∼2,500-fold vs. ∼6,000-fold, respectively) and fat (∼400-fold vs. ∼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were ∼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas ∼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that ∼100% of plasma SAA1.1 was recovered in HDL compared with only ∼50% of SAA2.1 and ∼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation
Impact of Individual Acute Phase Serum Amyloid A Isoforms on HDL Metabolism in Mice
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA’s rapid clearance. These studies enhance our understanding of SAA metabolism and SAA’s effects on AP-HDL composition and catabolism
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P \u3c 0.05) and 80% (P \u3c 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P \u3c 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment
Genetic heterogeneity in the leader and P1-coding regions of foot-and-mouth disease virus serotypes A and O in Africa
Genetic information regarding the leader (L) and complete capsid-coding (P1) region of FMD
serotype A and O viruses prevalent on the African conti-
nent is lacking.Here,we present the complete L-P1
sequences for eight serotype A and nine serotype O viruses
recovered from FMDV outbreaks in East and West Africa
over the last 33 years.Phylogenetic analysis of the P1 and
capsid-coding regions revealed that the African isolates
grouped according to serotype, and certain clusters were
indicative of transboundary as well as intra-regional spread
of the virus.However,similar analysis of the L region
revealed random groupings of isolates from serotypes O
and A.Comparisons between the phylogenetic trees
derived from the structura lcoding regions and the L region
pointed to a possibility of genetic recombination.The in-
tertypic nucleotide and amino acid variation of all the
isolates in this stud ysupported results from previous
studies where the externally located 1D was the most
variable whilst the internally located 1A was the most
conserved,which likely reflects the selective pressures on
these proteins.Amino acids identified previously as
important for FMDV structure and functioning were found
to be highly conserved.The information gained from this
study will contribute to the construction of structurally
designed FMDV vaccines in Africa.SA-UKcol-laboration initiative via the Department of Science and Technologyhttp://link.springer.com/journal/705hb201
Poverty as injustice
The title and thus broad framing of this article is "poverty as injustice". The implicit other side of the claim "poverty as injustice" is that justice would mean the absence of poverty. Our contention is that the understanding of poverty as a practical social problem in the first place rather than as a manifestation of injustice results in an approach to poverty that is focused solely on technical and managerial solutions to poverty. Such approaches to poverty are problematic because they lose sight of the political dimensions of poverty, that is, the fact that poverty is embedded in a particular ideology. A definition of "poverty" as inadequate access to basic living resources, such as, food, water, housing and health care, surfaces the political dimensions of poverty. What determines access to these basic resources is economic and political power. Any response to poverty must therefore engage power. At the heart of any response to poverty must be the search for, and the ideal of, justice.http://www.jutalaw.co.za/catalogue/itemdisplay.jsp?item_id=8843am201
Serum Amyloid A Impairs the Antiinflammatory Properties of HDL
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface–associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane
Synthesis of empty African horse sickness virus particles
As a means to develop African horse sickness (AHS) vaccines that are safe and DIVA compliant, we investigated the synthesis of empty African horse sickness virus (AHSV) particles. The emphasis of this study was on the assembly of the major viral core (VP3 and VP7) and outer capsid proteins (VP2 and VP5) into architecturally complex, heteromultimeric nanosized particles. The production of fully assembled core-like particles (CLPs) was accomplished in vivo by baculovirus-mediated co-synthesis of VP3 and VP7. The two different outer capsid proteins were capable of associating independently of each other with preformed cores to yield partial virus-like particles (VLPs). Complete VLPs were synthesized, albeit with a low yield. Crystalline formation of AHSV VP7 trimers is thought to impede high-level CLP production. Consequently, we engineered and co-synthesized VP3 with a more hydrophilic mutant VP7, resulting in an increase in the turnover of CLPs.The Agricultural Research Council (ARC) and National
Research Foundation (NRF).http://www.elsevier.com/locate/virusres2017-02-28hb2016GeneticsMicrobiology and Plant Patholog
Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis
<p>Abstract</p> <p>Background</p> <p>Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.</p> <p>Methods</p> <p>Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live <it>Escherichia coli</it>.</p> <p>Results</p> <p>Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured <it>E. coli</it>. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls.</p> <p>Conclusions</p> <p>Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..</p
- …