13 research outputs found

    Mapping QTLs for blight resistance and morpho-phenological traits in inter-species hybrid families of chestnut (Castanea spp.)

    Get PDF
    Chestnut blight (caused by Cryphonectria parasitica), together with Phytophthora root rot (caused by Phytophthora cinnamomi), has nearly extirpated American chestnut (Castanea dentata) from its native range. In contrast to the susceptibility of American chestnut, many Chinese chestnut (C. mollissima) genotypes are resistant to blight. In this research, we performed a series of genome-wide association studies for blight resistance originating from three unrelated Chinese chestnut trees (Mahogany, Nanking and M16) and a Quantitative Trait Locus (QTL) study on a Mahogany-derived inter-species F2 family. We evaluated trees for resistance to blight after artificial inoculation with two fungal strains and scored nine morpho-phenological traits that are the hallmarks of species differentiation between American and Chinese chestnuts. Results support a moderately complex genetic architecture for blight resistance, as 31 QTLs were found on 12 chromosomes across all studies. Additionally, although most morpho-phenological trait QTLs overlap or are adjacent to blight resistance QTLs, they tend to aggregate in a few genomic regions. Finally, comparison between QTL intervals for blight resistance and those previously published for Phytophthora root rot resistance, revealed five common disease resistance regions on chromosomes 1, 5, and 11. Our results suggest that it will be difficult, but still possible to eliminate Chinese chestnut alleles for the morpho-phenological traits while achieving relatively high blight resistance in a backcross hybrid tree. We see potential for a breeding scheme that utilizes marker-assisted selection early for relatively large effect QTLs followed by genome selection in later generations for smaller effect genomic regions

    Cell elongation in the grass pulvinus in response to geotropic stimulation and auxin application

    Full text link
    Horizontally-placed segments of Avena sativa L. shoots show a negative geotropic response after a period of 30 min. This response is based on cell elongation on the lower side of the leaf-sheath base (pulvinus). Triticum aestivum L., Hordeum vulgare L. and Secale cereale L. also show geotropic responses that are similar to those in Avena shoots. The pulvinus is a highly specialized organ with radial symmetry and is made up of epidermal, vascular, parenchymatous and collenchymatous tissues. Statoliths, which are confined to parenchyma cells around the vascular bundles, sediment towards the gravitational field within 10–15 min of geotropic stimulation. Collenchymatous cells occur as prominent bundle caps, and in Avena , they occupy about 30% of the volume of the pulvinus. Geotropic stimulation causes a 3- to 5-fold increase in the length of the cells on the side nearest to the center of the gravitational field. Growth can also be initiated in vertically-held pulvini by the application of indole-3-acetic acid, 1-naphthaleneacetic acid or 2.4-dichlorophenoxyacetic acid. 2.3.5.-triiodobenzoic acid interferes with growth response produced by geotropic stimulation as well as with the response caused by auxin application. Gibberellic acid and kinetin have no visible effect on the growth of the pulvinus. Polarization microscopy shows a unique, non-uniform stretching of the elongating collenchymatous cells. Nonelongated collenchymatous cells appear uniformally anisotropic. After geotropic stimulation or auxin application, they appear alternately anisotropic and almost isotropic. Such a pattern of cell elongation is also observed in collenchyma cells of geotropically-stimulated shoots of Rumex acetosa L., a dicotyledon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47463/1/425_2004_Article_BF00385422.pd

    Young Snowy Egrets with Saffron in Plumage

    No full text

    Sexual Selection in Woodpeckers

    No full text

    Studies on Acidification of Media by Avena

    No full text

    Modelling chestnut biogeography for American chestnut restoration

    No full text
    Aim Chestnuts (Castanea spp.) are ecologically and economically important species. We studied the general biology, distribution and climatic limits of seven chestnut species from around the world. We provided climatic matching of Asiatic species to North America to assist the range-wide restoration of American chestnut [C. dentata (Marsh.) Borkh.] by incorporating blight-resistant genes from Asiatic species. Location North America, Europe and East Asia. Methods General chestnut biology was reviewed on the basis of published literature and field observations. Chestnut distributions were established using published range maps and literature. Climatic constraints were analysed for the northern and southern distribution limits and the entire range for each species using principal component analysis (PCA) of fourteen bioclimatic variables. Climatic envelope matching was performed for three Chinese species using Maxent modelling to predict corresponding suitable climate zones for those species in North America. Results Chestnuts are primarily distributed in the warm-temperate and subtropical zones in the northern hemisphere. PCA results revealed that thermal gradient was the primary control of chestnut distribution. Climatic spaces of different species overlap with one another to different degrees, but strong similarities are shown especially between Chinese species and American species. Climatic envelope matching suggested that large areas in eastern North America have a favourable climate for Chinese species. Main conclusions The general biological traits and climatic limits of the seven chestnut species are very similar. The predictions of Chinese species climatic range corresponded with most of the historical American chestnut range. Thus, a regionally adapted, blight-resistant, introgressed hybrid American chestnut appears feasible if a sufficiently diverse array of Chinese chestnut germplasm is used as a source of blight resistance. Our study provided a between-continent climate matching approach to facilitate the range-wide species restoration, which can be readily applied in planning the restoration of other threatened or endangered species.Biodiversity ConservationEcologySCI(E)0ARTICLE8754-7681
    corecore