29 research outputs found

    Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Get PDF
    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.140841

    Recruitment Strategies and Colony Size in Ants

    Get PDF
    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony's organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology

    Base-Resolution Analysis of DNA Methylation Patterns Downstream of Dnmt3a in Mouse NaĂŻve B Cells

    No full text
    The DNA methyltransferase, Dnmt3a, is dynamically regulated throughout mammalian B cell development and upon activation by antigenic stimulation. Dnmt3a inactivation in hematopoietic stem cells has been shown to drive B cell-related malignancies, including chronic lymphocytic leukemia, and associates with specific DNA methylation patterns in transformed cells. However, while it is clear that inactivation of Dnmt3a in hematopoietic stem cells has profound functional effects, the consequences of Dnmt3a inactivation in cells of the B lineage are unclear. To assess whether loss of Dnmt3a at the earliest stages of B cell development lead to DNA methylation defects that might impair function, we selectively inactivated Dnmt3a early in mouse B cell development and then utilized whole genome bisulfite sequencing to generate base-resolution profiles of Dnmt3a+/+ and Dnmt3a−/− naïve splenic B cells. Overall, we find that global methylation patterns are largely consistent between Dnmt3a+/+ and Dnmt3a−/− naïve B cells, indicating a minimal functional effect of DNMT3A in mature B cells. However, loss of Dnmt3a induced 449 focal DNA methylation changes, dominated by loss-of-methylation events. Regions found to be hypomethylated in Dnmt3a−/− naïve splenic B cells were enriched in gene bodies of transcripts expressed in B cells, a fraction of which are implicated in B cell-related disease. Overall, the results from this study suggest that factors other than Dnmt3a are the major drivers for methylome maintenance in B cell development

    Approaching Health Disparities From a Population Perspective: The National Institutes of Health Centers for Population Health and Health Disparities

    No full text
    Addressing health disparities has been a national challenge for decades. The National Institutes of Health–sponsored Centers for Population Health and Health Disparities are the first federal initiative to support transdisciplinary multilevel research on the determinants of health disparities. Their novel research approach combines population, clinical, and basic science to elucidate the complex determinants of health disparities. The centers are partnering with community-based, public, and quasi-public organizations to disseminate scientific findings and guide clinical practice in communities. In turn, communities and public health agents are shaping the research. The relationships forged through these complex collaborations increase the likelihood that the centers’ scientific findings will be relevant to communities and contribute to reductions in health disparities

    New insights and updated guidelines for epigenome-wide association studies

    Get PDF
    Epigenetic dysregulation in disease is increasingly studied as a potential mediator of pathophysiology. The epigenetic events are believed to occur in somatic cells, but the limited changes of DNA methylation in studies to date indicate that only subsets of the cells tested undergo epigenetic dysregulation. The recognition of this subpopulation effect indicates the need for care in design and execution of epigenome-wide association studies (EWASs), paying particular attention to confounding sources of variability. To maximize the sensitivity of the EWASs, ideally, the cell type mediating the disease should be tested, which is not always practical or ethical in human subjects. The value of using accessible cells as surrogates for the target, disease-mediating cell type has not been rigorously tested to date. In this review, participants in a workshop convened by the National Institutes of Health update EWAS design and execution guidelines to reflect new insights in the field

    U.S., China, and the WTO: Trading with the enemy?

    No full text
    This article surveys and analyzes various views in the United States on America's trade relations with China in general and China's application for membership in the World Trade Organization (WTO) in particular. Different opinions can be heard from all sides of the political spectrum, but three distinctive camps can easily be identified in the United States regarding China's WTO membership and America's normal trade relations with China: strong supporters, fierce opponents and those between the extremes.
    corecore