83 research outputs found

    Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles

    Get PDF
    New drugs targeting bile acid metabolism are currently being evaluated in clinical studies for their potential to treat cholestatic liver diseases, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Changes in bile acid metabolism, however, translate into an alteration of plasma cholesterol and triglyceride concentrations, which may also affect cardiovascular outcomes in such patients. This review attempts to gain insight into this matter and improve our understanding of the interactions between bile acid and lipid metabolism. Bile acid sequestrants (BAS), which bind bile acids in the intestine and promote their faecal excretion, have long been used in the clinic to reduce LDL cholesterol and, thereby, atherosclerotic cardiovascular disease (ASCVD) risk. However, BAS modestly but consistently increase plasma triglycerides, which is considered a causal risk factor for ASCVD. Like BAS, inhibitors of the apical sodium-dependent bile acid transporter (ASBTi’s) reduce intestinal bile acid absorption. ASBTi’s show effects that are quite similar to those obtained with BAS, which is anticipated when considering that accelerated faecal loss of bile acids is compensated by an increased hepatic synthesis of bile acids from cholesterol. Oppositely, treatment with farnesoid X receptor agonists, resulting in inhibition of bile acid synthesis, appears to be associated with increased LDL cholesterol. In conclusion, the increasing efforts to employ drugs that intervene in bile acid metabolism and signalling pathways for the treatment of metabolic diseases such as NAFLD warrants reinforcing interactions between the bile acid and lipid and lipoprotein research fields. This review may be considered as the first step in this process

    Short-term obeticholic acid treatment does not impact cholangiopathy in Cyp2c70-deficient mice with a human-like bile acid composition

    Get PDF
    Cyp2c70-/- mice with a human-like bile acid (BA) composition, lacking hydrophilic muricholic acids (MCAs), have been reported to display cholangiopathy and biliary fibrosis with female preponderance that can be reversed by ursodeoxycholic acid (UDCA). Obeticholic acid (OCA), a steroidal BA-like FXR agonist, has been shown to improve liver function in patients with primary biliary cholangitis and is approved as second-line treatment for patients with an inadequate response or intolerance to UDCA. Here, we investigated the impact of OCA on BA hydrophobicity and cholangiopathy in Cyp2c70-/- mice. Male and female wild-type (WT) and Cyp2c70-/- mice were fed a chow diet with or without 10 mg/kg/day OCA for 4 weeks. OCA accounted for 1-5% of biliary BAs, with larger enrichments in Cyp2c70-/- than in WT mice. In WT mice, OCA induced a more hydrophilic, MCA-rich BA pool. In Cyp2c70-/- mice, however, BA pool became more hydrophobic with a larger proportion of chenodeoxycholic acid, attributable to a reduction of BA 12α-hydroxylation. OCA treatment reduced fecal BA excretion, indicating repression of hepatic BA synthesis in both WT and Cyp2c70-/- mice. OCA did, however, not impact on markers of liver (dys)function in plasma nor did it ameliorate cholangiopathy and fibrosis in male or female Cyp2c70-/- mice. OCA treatment also did not affect the expression of genes involved in fibrosis, inflammation and cellular senescence. In conclusion, 4 weeks of OCA treatment oppositely modulates the hydrophobicity of the BA pool in WT and Cyp2c70-/- mice, but does not improve or worsen the characteristic sex-dependent liver pathology in Cyp2c70-/- mice

    Group IIA Secretory Phospholipase A(2) Predicts Graft Failure and Mortality in Renal Transplant Recipients by Mediating Decreased Kidney Function

    Get PDF
    The acute phase protein group IIA secretory phospholipase A(2) (sPLA(2)-IIA) has intrinsic proatherosclerotic properties. The present prospective cohort study investigated whether plasma sPLA(2)-IIA associates with graft failure, cardiovascular, and all-cause mortality in renal transplant recipients (RTRs), patients with accelerated atherosclerosis formation both systemically and within the graft. In 511 RTRs from a single academic center with stable graft function >1 year, baseline plasma sPLA(2)-IIA was determined by ELISA. Primary end points were death-censored graft failure and mortality (median follow-up, 7.0 years). Baseline sPLA(2)-IIA was higher in RTRs than in healthy controls (median 384 ng/dL (range 86-6951) vs. 185 ng/dL (range 104-271), p <0.001). Kaplan-Meier analysis demonstrated increased risk for graft failure (p = 0.002), as well as cardiovascular (p <0.001) and all-cause mortality (p <0.001), with increasing sPLA(2)-IIA quartiles. Cox regression showed strong associations of sPLA(2)-IIA with increased risks of graft failure (hazard ratio (HR) = 1.42 (1.11-1.83), p = 0.006), as well as cardiovascular (HR = 1.48 (1.18 1.85), p = 0.001) and all-cause mortality (HR = 1.39 (1.17 1.64), p <0.001), dependent on parameters of kidney function. Renal function during follow-up declined faster in RTRs with higher baseline sPLA(2)-IIA levels. In RTRs, sPLA(2)-IIA is a significant predictive biomarker for chronic graft failure, as well as overall and cardiovascular disease mortality dependent on kidney function. This dependency is conceivably explained by sPLA(2)-IIA impacting negatively on kidney function

    A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice[S]

    Get PDF
    Bile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data. Cytochrome P450 family 2 subfamily c polypeptide 70 (CYP2C70) was recently proposed to catalyze the formation of rodent-specific muricholic acids (MCAs). With CRISPR/Cas9-mediated somatic genome editing, we generated an acute hepatic Cyp2c70 knockout mouse model (Cyp2c70ako) to clarify the role of CYP2C70 in BA metabolism in vivo and evaluate whether its activity modulates effects of pharmacologic FXR activation on cholesterol homeostasis. In Cyp2c70ako mice, chenodeoxycholic acid (CDCA) increased at the expense of βMCA, resulting in a more hydrophobic human-like BA pool. Tracer studies demonstrated that, in vivo, CYP2C70 catalyzes the formation of βMCA primarily by sequential 6β-hydroxylation and C7-epimerization of CDCA, generating βMCA as an intermediate metabolite. Physiologically, the humanized BA composition in Cyp2c70ako mice blunted the stimulation of fecal cholesterol disposal in response to FXR activation compared with WT mice, predominantly due to reduced stimulation of transintestinal cholesterol excretion. Thus, deletion of hepatic Cyp2c70 in adult mice translates into a human-like BA pool composition and impacts the response to pharmacologic FXR activation. This Cyp2c70ako mouse model may be a useful tool for future studies of BA signaling and metabolism that informs human disease development and treatment

    Absence of gut microbiota reduces neonatal survival and exacerbates liver disease in Cyp2c70-deficient mice with a human-like bile acid composition

    Get PDF
    Mice with deletion of Cyp2c70 have a human-like bile acid composition, display age- and sex-dependent signs of hepatobiliary disease and can be used as a model to study interactions between bile acids and the gut microbiota in cholestatic liver disease. In the present study, we rederived Cyp2c70-/- mice as germ-free (GF) and colonized them with a human or a mouse microbiota to investigate whether the presence of a microbiota can be protective in cholangiopathic liver disease associated with Cyp2c70-deficiency. GF Cyp2c70-/- mice showed reduced neonatal survival, liver fibrosis, and distinct cholangiocyte proliferation. Colonization of germ-free breeding pairs with a human or a mouse microbiota normalized neonatal survival of the offspring, and particularly colonization with mouse microbiota from a conventionally raised mouse improved the liver phenotype at 6-10 weeks of age. The improved liver phenotype in conventionalized (CD) Cyp2c70-/- mice was associated with increased levels of tauro-ursodeoxycholic acid (TUDCA) and UDCA, resulting in a more hydrophilic bile acid profile compared with GF and humanized Cyp2c70-/- mice. The hydrophobicity index of biliary bile acids of CD Cyp2c70-/- mice was associated with changes in gut microbiota, liver weight, liver transaminases, and liver fibrosis. Hence, our results indicate that neonatal survival of Cyp2c70-/- mice seems to depend on the establishment of a gut microbiota at birth, and the improved liver phenotype in CD Cyp2c70-/- mice may be mediated by a larger proportion of TUDCA/UDCA in the circulating bile acid pool and/or by the presence of specific bacteria.</p

    Impaired Bile Acid Metabolism and Gut Dysbiosis in Mice Lacking Lysosomal Acid Lipase

    Get PDF
    Lysosomal acid lipase (LAL) is the sole enzyme known to be responsible for the hydrolysis of cholesteryl esters and triglycerides at an acidic pH in lysosomes, resulting in the release of unesterified cholesterol and free fatty acids. However, the role of LAL in diet-induced adaptations is largely unexplored. In this study, we demonstrate that feeding a Western-type diet to Lal-deficient (LAL-KO) mice triggers metabolic reprogramming that modulates gut-liver cholesterol homeostasis. Induction of ileal fibroblast growth factor 15 (three-fold), absence of hepatic cholesterol 7α-hydroxylase expression, and activation of the ERK phosphorylation cascade results in altered bile acid composition, substantial changes in the gut microbiome, reduced nutrient absorption by 40%, and two-fold increased fecal lipid excretion in LAL-KO mice. These metabolic adaptations lead to impaired bile acid synthesis, lipoprotein uptake, and cholesterol absorption and ultimately to the resistance of LAL-KO mice to diet-induced obesity. Our results indicate that LAL-derived lipolytic products might be important metabolic effectors in the maintenance of whole-body lipid homeostasis
    • …
    corecore