494 research outputs found
Hydrophobic and hydrophilic au and ag nanoparticles. Breakthroughs and perspectives
This review provides a broad look on the recent investigations on the synthesis, characterization and physico-chemical properties of noble metal nanoparticles, mainly gold and silver nanoparticles, stabilized with ligands of different chemical nature. A comprehensive review of the available literature in this field may be far too large and only some selected representative examples will be reported here, together with some recent achievements from our group, that will be discussed in more detail. Many efforts in finding synthetic routes have been performed so far to achieve metal nanoparticles with well-defined size, morphology and stability in different environments, to match the large variety of applications that can be foreseen for these materials. In particular, the synthesis and stabilization of gold and silver nanoparticles together with their properties in different emerging fields of nanomedicine, optics and sensors are reviewed and briefly commented
Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies
In this work, the synthesis and characterization of functionalized platinum nanoparticles (PtNPs) have been investigated. PtNPs were obtained by a wet redox procedure using 2-diethylaminoethanethiol hydrochloride (DEA) as capping agent. By varying the Pt/thiol molar ratio, monodispersed and stable particles with diameters in the range of 3-40 nm were isolated. The amino functionality allows neutral particles to be obtained in basic water solution and positive charged nanoparticles in neutral or acidic water solution (pH 7-2), as confirmed by DLS and ζ-potential measurements. FTIR spectroscopy, FE-SEM, DLS and ζ-potential measurements confirmed the size and showed long term water stability (up to three months) of the colloidal system
Chemiresistive polyaniline-based gas sensors: a mini review
This review focuses on some recent advances made in the field of gas sensors based on polyaniline [PANI], a conducting polymer with excellent electronic conductivity and electrochemical properties. Conducting polymers represent an important class of organic materials with an enhanced resistivity towards external stimuli. Among them, PANI polymers have attracted wide interest because of the versatility in their use, combined with the easy of synthesis, high yield and good environmental stability, together with a favorable response to guest molecules at room temperature. Moreover, PANI can be shaped into various structures with different morphologies and the possibility of obtaining nanofibers, in addition to thin films, has opened a rapid development of ultrasensitive chemical sensors, with improved processability and functionality. This review provides a brief description of the current status of gas chemiresistive sensors based on polyaniline and highlights the properties and applications of these devices in diverse range of applications. © 2015 Elsevier B.V. All rights reserved
How toxic are gold nanoparticles? The state-of-the-art.
With the growing interest in biotechnological applications of gold nanoparticles and their effects exerted on the body, the possible toxicity is becoming an increasingly important issue. Numerous investigations carried out, in the last few years, under different experimental conditions, following different protocols, have produced in part conflicting results which have leaded to different views about the effective gold nanoparticle safety in human applications.
This work is intended to provide an overview on the most recent experimental results in order to summarize the current state-of-the-art. However, rather than to present a comprehensive review of the available literature in this field, that, among other things, is really huge, we have selected some representative examples of both in vivo and in vitro investigations, with the aim of offering a scenario from which clearly emerges the need of an urgent and impelling standardization of the experimental protocols. To date, despite the great potential, the safety of gold nanoparticles is highly controversial and important concerns have been raised with the need to be properly addressed. Factors such as shape, size, surface charge, surface coating and surface functionalization are expected to influence interactions with biological systems at different extents, with different outcomes, as far as gold nanoparticle potentiality in biomedical applications is concerned. Moreover, despite the continuous attempt to establish a correlation between structure and interactions with biological systems, we are still far from assessing the
toxicological profile of gold nanoparticles in an unquestionable manner. This review is intended to provide a contribution in this direction, offering some suggestions in order to reach the systematization of data over the most relevant physico-chemical parameters, which govern and control toxicity, at different cellular and organismal levels
Time-resolved optical studies, heat dissipation and melting of Ag and Au nanoparticle systems and arrays
Transient absorption spectroscopy has been extensively used in recent years to examine the temporal response of isolated nanoparticles (NPs) to the absorption of light [1]. These studies are largely based on the use of the surface plasmon resonance (SPR) to monitor characteristics of the NP such as electronic and lattice temperature, shape and morphology as a function of time. In the case of extended Au/Ag NP structures the plasmon resonance is strongly distorted due to the inter-particle coupling effects. For example, we have observed this effect in Rhodamine dye functionalized Au nanoparticles which undergo self-assembly to form nanostructures due to the interactions between the dye molecules attached to the surfaces of the nanoparticles. Indeed the SPR splits into two with one resonance remaining in the vicinity of that of the isolated AuNPs and is generally called the transverse SPR while a second resonance due to an extended excitation spanning across multiple particles appears to the lower energies. The precise spectral energy and shape of the extended plasmon resonance depends on the inter-particle distance, the particle disposition and the number of particles involved. When the plasmon band or interband spectral region of the NP is excited by an intense pulse the photon energy absorbed by the electrons is transferred to the lattice of the NP as heat through electron-phonon coupling. Depending on the intensity of the light pulse and thus the initial electron temperature a number of outcomes are possible. The first aim of this work is to use low intensity pump pulses to study the wavelength dependence of the sub 10 ps dynamics which reflects the electron-photon scattering within the nanoparticle structure. On the other hand, the interaction of more intense light with the NPs can modify the morphology of NP systems, for example by reshaping gold nanorods into nanospheres or, in general, mediate the synthesis of metallic nanostructures. At medium intensities the initial temperature is sufficient to induce melting of the NPs which can lead to morphological changes of the NP structure. Higher intensities can cause other effects such as photofragmentation of the NPs, release of stabiliser molecules from the surface of the NPs or even Coulomb explosion due to multiple ionisation events. The second aim of this work is to concentrate on the effects of medium intensity laser excitation of a self-assembled Au/Ag NP systems. The NP system is excited by a femtosecond laser pulse of different wavelengths allowing selective deposition of energy and the subsequent heat dissipation through phonon-phonon coupling and morphological changes are monitored in time by recording transient absorption spectra in the visible range. This wavelength range makes it possible to follow the phonon-phonon coupling effects on the recovery of the bleaching of both the transverse and extended plasmon resonances of the NP system. As the intensity of the pump pulse is increased it can be seen that the NPs are no longer able to dissipate all of the heat before arrival of subsequent laser pulses thus leading to melting of the NP structure and strong changes in the plasmon response of the system. The overall aim of this study is to fully understand the delocalized electron-phonon coupling in the extended plasmon region of the NP structures and to use this knowledge to control the melting in nanostructures. The methods developed can be useful for plasmon mediated nano-engineerin
Spatial properties of conjugated network in semicrystalline polymer thin films studied by intensity x-ray cross-correlation functions
We present results of x-ray study of spatial properties of
conjugated networks in polymer thin films. We applied the x-ray
cross-correlation analysis to x-ray scattering data from blends of
poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of
the intensity cross-correlation functions for different films contain non-zero
components of orders and measuring the degree of structural order
in the system.Comment: 6 pages, 2 figures, Proceedings ICXOM22 Conference, 2-6 September
2013, Hamburg, German
Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems
The effect of postmastectomy radiation therapy on breast implants. Material analysis on silicone and polyurethane prosthesis
The pathogenic mechanism underlying capsular contracture is still unknown. It is certainly a multifactorial process, resulting from human body reaction, biofilm activation, bacteremic seeding, or silicone exposure. The scope of the present article is to investigate the effect of hypofractionated radiotherapy protocol (2.66 Gy × 16 sessions) both on silicone and polyurethane breast implants.Silicone implants and polyurethane underwent irradiation according to a hypofractionated radiotherapy protocol for the treatment of breast cancer. After irradiation implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, infrared spectra in attenuated total reflectance mode, nuclear magnetic resonance, and field emission scanning electron microscopy.At superficial analysis, irradiated silicone samples show several visible secondary and tertiary blebs. Polyurethane implants showed an open cell structure, which closely resembles a sponge. Morphological observation of struts from treated polyurethane sample shows a more compact structure, with significantly shorter and thicker struts compared with untreated sample. The infrared spectra in attenuated total reflectance mode spectra of irradiated and control samples were compared either for silicon and polyurethane samples. In the case of silicone-based membranes, treated and control specimens showed similar bands, with little differences in the treated one. Nuclear magnetic resonance spectra on the fraction soluble in CDCl3 support these observations. Tensile tests on silicone samples showed a softer behavior of the treated ones. Tensile tests on Polyurethane samples showed no significant differences.Polyurethane implants seem to be more resistant to radiotherapy damage, whereas silicone prosthesis showed more structural, mechanical, and chemical modifications
Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization
Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride), or poly(phenylacetylene-co-allylmercaptan). The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm) with polymeric shell of about 2 nm
Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of ?-Fe2O3-polyacrylic acid (PAA) nanoparticles (?-Fe(2)O(3)NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe(2)) were used as starting reagents for the hydrogelator (Fmoc-Phe(3)) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (?-Fe(2)O(3)NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ?-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) ?-Fe(2)O(3)NPs stabilized with PAA, (?-Fe(2)O(3)NPs); (2) Fmoc-Phe(3) hydrogel (HG); (3) ?-Fe(2)O(3)NPs embedded in peptide magnetogel (?-Fe(2)O(3)NPs@HG); and (4) ?-Fe(2)O(3)NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe(3) hydrogel and ?-Fe(2)O(3)NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic ?-Fe(2)O(3)NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of ?-Fe(2)O(3)NPs-peptide magnetogels to the removal of pollutants from aqueous media
- …