1,965 research outputs found
An immunohistochemical study of the diagnostic value of TREM-1 as marker for fatal sepsis cases
Triggering receptor expressed on myeloid cells-1 (TREM-1) is produced and up-regulated by exposure of myeloid cells to lipopolysaccharides or other components of either bacterial or fungal origin, which causes it to be strongly expressed on phagocytes that accumulate in inflamed areas. Because TREM-1 participates in septic shock and in amplifying the inflammatory response to bacterial and fungal infections, we believe it could be an immunohistochemical marker for postmortem diagnosis of sepsis. We tested the anti-TREM-1 antibody in 28 cases of death by septic shock and divided them into two groups. The diagnosis was made according to the criteria of the Surviving Sepsis Campaign. In all cases, blood cultures were positive. The first group was comprised subjects that presented high ante-mortem serum procalcitonin and the soluble form of TREM-1 (s-TREM-1) values. The second group comprised subjects in which s-TREM-1 was not measured ante-mortem. We used samples of brain, heart, lung, liver and kidney for each case to test the anti-TREM-1 antibody. A semiquantitative evaluation of the immunohistochemical findings was made. In lung samples, we found immunostaining in the cells of the monocyte line in 24 of 28 cases, which suggests that TREM-1 is produced principally by cells of the monocyte line. In liver tissue, we found low TREM-staining in the hepatocyte cytoplasm, duct epithelium, the portal-biliary space and blood vessel. In kidney tissue samples, we found the TREM-1 antibody immunostaining in glomeruli and renal tubules. We also found TREM-1 staining in the lumen of blood vessels. Immunohistochemical staining using the anti-TREM-1 antibody can be useful for postmortem diagnosis of sepsis
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Simultaneous Embeddings with Few Bends and Crossings
A simultaneous embedding with fixed edges (SEFE) of two planar graphs and
is a pair of plane drawings of and that coincide when restricted to
the common vertices and edges of and . We show that whenever and
admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve
with few bends and every pair of edges has few crossings. Specifically: (1) if
and are trees then one bend per edge and four crossings per edge pair
suffice (and one bend per edge is sometimes necessary), (2) if is a planar
graph and is a tree then six bends per edge and eight crossings per edge
pair suffice, and (3) if and are planar graphs then six bends per edge
and sixteen crossings per edge pair suffice. Our results improve on a paper by
Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a
paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge
pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and
Crossings" accepted at GD '1
Cerebrovascular complications and infective endocarditis. impact of available evidence on clinical outcome
Infective endocarditis (IE) is a life-threatening disease. Its epidemiological profile has substantially changed in recent years although 1-year mortality is still high. Despite advances in medical therapy and surgical technique, there is still uncertainty on the best management and on the timing of surgical intervention. The objective of this review is to produce further insight intothe short- and long-term outcomes of patients with IE, with a focus on those presenting cerebrovascular complications
On a Tree and a Path with no Geometric Simultaneous Embedding
Two graphs and admit a geometric simultaneous
embedding if there exists a set of points P and a bijection M: P -> V that
induce planar straight-line embeddings both for and for . While it
is known that two caterpillars always admit a geometric simultaneous embedding
and that two trees not always admit one, the question about a tree and a path
is still open and is often regarded as the most prominent open problem in this
area. We answer this question in the negative by providing a counterexample.
Additionally, since the counterexample uses disjoint edge sets for the two
graphs, we also negatively answer another open question, that is, whether it is
possible to simultaneously embed two edge-disjoint trees. As a final result, we
study the same problem when some constraints on the tree are imposed. Namely,
we show that a tree of depth 2 and a path always admit a geometric simultaneous
embedding. In fact, such a strong constraint is not so far from closing the gap
with the instances not admitting any solution, as the tree used in our
counterexample has depth 4.Comment: 42 pages, 33 figure
Safety of sublingual-swallow immunotherapy in children aged 3 to 7 years
The minimum age to start specific immunotherapy with inhalant allergens in children has not been clearly established, and position papers discourage its use in children younger than 5 years
Drawing Trees with Perfect Angular Resolution and Polynomial Area
We study methods for drawing trees with perfect angular resolution, i.e.,
with angles at each node v equal to 2{\pi}/d(v). We show:
1. Any unordered tree has a crossing-free straight-line drawing with perfect
angular resolution and polynomial area.
2. There are ordered trees that require exponential area for any
crossing-free straight-line drawing having perfect angular resolution.
3. Any ordered tree has a crossing-free Lombardi-style drawing (where each
edge is represented by a circular arc) with perfect angular resolution and
polynomial area. Thus, our results explore what is achievable with
straight-line drawings and what more is achievable with Lombardi-style
drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure
Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study
PURPOSE:
Ventricular–arterial (V–A) decoupling decreases myocardial efficiency and is exacerbated by tachycardia that increases static arterial elastance (Ea). We thus investigated the effects of heart rate (HR) reduction on Ea in septic shock patients using the beta-blocker esmolol. We hypothesized that esmolol improves Ea by positively affecting the tone of arterial vessels and their responsiveness to HR-related changes in stroke volume (SV).
METHODS:
After at least 24 h of hemodynamic optimization, 45 septic shock patients, with an HR ≥95 bpm and requiring norepinephrine to maintain mean arterial pressure (MAP) ≥65 mmHg, received a titrated esmolol infusion to maintain HR between 80 and 94 bpm. Ea was calculated as MAP/SV. All measurements, including data from right heart catheterization, echocardiography, arterial waveform analysis, and norepinephrine requirements, were obtained at baseline and at 4 h after commencing esmolol.
RESULTS:
Esmolol reduced HR in all patients and this was associated with a decrease in Ea (2.19 ± 0.77 vs. 1.72 ± 0.52 mmHg l−1), arterial dP/dtmax (1.08 ± 0.32 vs. 0.89 ± 0.29 mmHg ms−1), and a parallel increase in SV (48 ± 14 vs. 59 ± 18 ml), all p < 0.05. Cardiac output and ejection fraction remained unchanged, whereas norepinephrine requirements were reduced (0.7 ± 0.7 to 0.58 ± 0.5 µg kg−1 min−1, p < 0.05).
CONCLUSIONS:
HR reduction with esmolol effectively improved Ea while allowing adequate systemic perfusion in patients with severe septic shock who remained tachycardic despite standard volume resuscitation. As Ea is a major determinant of V–A coupling, its reduction may contribute to improving cardiovascular efficiency in septic shock
- …
