4 research outputs found

    Assessment of the extirpated Maritimes walrus using morphological and ancient DNA analysis

    Get PDF
    Publisher's Version/PDFSpecies biogeography is a result of complex events and factors associated with climate change, ecological interactions, anthropogenic impacts, physical geography, and evolution. To understand the contemporary biogeography of a species, it is necessary to understand its history. Specimens from areas of localized extinction are important, as extirpation of species from these areas may represent the loss of unique adaptations and a distinctive evolutionary trajectory. The walrus (Odobenus rosmarus) has a discontinuous circumpolar distribution in the arctic and subarctic that once included the southeastern Canadian Maritimes region. However, exploitation of the Maritimes population during the 16th-18th centuries led to extirpation, and the species has not inhabited areas south of 55°N for ∼250 years. We examined genetic and morphological characteristics of specimens from the Maritimes, Atlantic (O. r. rosmarus) and Pacific (O. r. divergens) populations to test the hypothesis that the first group was distinctive. Analysis of Atlantic and Maritimes specimens indicated that most skull and mandibular measurements were significantly different between the Maritimes and Atlantic groups and discriminant analysis of principal components confirmed them as distinctive groups, with complete isolation of skull features. The Maritimes walrus appear to have been larger animals, with larger and more robust tusks, skulls and mandibles. The mtDNA control region haplotypes identified in Maritimes specimens were unique to the region and a greater average number of nucleotide differences were found between the regions (Atlantic and Maritimes) than within either group. Levels of diversity (h and π) were lower in the Maritimes, consistent with other studies of species at range margins. Our data suggest that the Maritimes walrus was a morphologically and genetically distinctive group that was on a different evolutionary path from other walrus found in the north Atlantic

    Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat (Myotis lucifugus)

    Get PDF
    Publisher's Version/PDFCharacterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white-nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292-bp region of the mitochondrial genome. Analyses of FST, &Phi;ST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, P &lt; 0.05, Global &Phi;ST = 0.045, P &lt; 0.01, STRUCTURE K = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male-biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation.</p

    Postcopulatory selection for dissimilar gametes maintains heterozygosity in the endangered North Atlantic right whale

    Get PDF
    Publisher's Version/PDFAlthough small populations are expected to lose genetic diversity through genetic drift and inbreeding, a number of mechanisms exist that could minimize this genetic decline. Examples include mate choice for unrelated mates and fertilization patterns biased toward genetically dissimilar gametes. Both processes have been widely documented, but the long-term implications have received little attention. Here, we combined over 25 years of field data with high-resolution genetic data to assess the long-term impacts of biased fertilization patterns in the endangered North Atlantic right whale. Offspring have higher levels of microsatellite heterozygosity than expected from this gene pool (effect size = 0.326, P < 0.011). This pattern is not due to precopulatory mate choice for genetically dissimilar mates (P < 0.600), but instead results from postcopulatory selection for gametes that are genetically dissimilar (effect size = 0.37, P < 0.003). The long-term implication is that heterozygosity has slowly increased in calves born throughout the study period, as opposed to the slight decline that was expected. Therefore, this mechanism represents a natural means through which small populations can mitigate the loss of genetic diversity over time

    Population Genetic Structure Within and among Seasonal Site Types in the Little Brown Bat (Myotis lucifugus) and the Northern Long-Eared Bat (M. septentrionalis)

    Get PDF
    Publisher's version/PDFDuring late summer and early autumn, temperate bats migrate from their summering sites to swarming sites, where mating likely occurs. However, the extent to which individuals of a single summering site migrate to the same swarming site, and vice versa, is not known. We examined the migratory connectivity between summering and swarming sites in two temperate, North American, bat species, the little brown bat (Myotis lucifugus) and the northern long-eared bat (Myotis septentrionalis). Using mitochondrial and microsatellite DNA markers, we examined population structuring within and among summering and swarming sites. Both species exhibited moderate degrees of mitochondrial DNA differentiation (little brown bat: F[subscript ST(SWARMING)] = 0.093, F[subscript ST(SWARMING)] = 0.052; northern long-eared bat: F[subscript ST(SWARMING)] = 0.117, F[subscript ST(SWARMING)] = 0.043) and little microsatellite DNA differentiation among summering and among swarming sites. Haplotype diversity was significantly higher at swarming sites than summering sites, supporting the idea that swarming sites are comprised of individuals from various summering sites. Further, pairwise analyses suggest that swarming sites are not necessarily comprised of only individuals from the most proximal summering colonies.Funding for this work was provided by The Canadian Wildlife Federation, Nova Scotia Power, Eon Wind Electric, Shear Wind Inc., The New Brunswick Museum, New Brunswick Wildlife Trust Fund, Bat Conservation International, and the Natural Sciences and Engineering Research Council (Discovery Grant 283217-2010; CRDG 418936-11) Canadian Wildlife Federation: http://www.cwf-fcf.org/en/. Nova Scotia Power: https://www.nspower.ca/en/home/default.aspx. Eon Wind Electric: http://www.eonwind.com. Shear Wind Inc.: http://www.shearwind.com. The New Brunswick Museum: http://www.nbm-mnb.ca. New Brunswick Wildlife Trust Fund: http://www.nbwtf.ca/eindex.asp. Bat Conservation International: http://www.batcon.org. Natural Sciences and Engineering Research Council (Discovery Grant 283217-2010; CRDG 418936-11): http://www.nserc-crsng.gc.ca/index_eng.asp. Note: each industrial funder has agreed to the publishing of this paper
    corecore