16,197 research outputs found

    Atmospheric H2O and the search for Martian brines

    Get PDF
    Abundant martian brines would have important implication for current theories of volatile migration on Mars, since, although the presence of metastable brines is quite plausible, any brine in the reasonably near-surface should be completely depleted on a timescale short in relation to the age of Mars. It is important to determine whether brines exist in the martian subsurface, for the current paradigm for understanding martian volatile regime requires substantial alteration if they are found to exist. It is determined, however, that the prospect for detection of a subsurface brine via atmospheric water vapor measurements is marginal. Four reasons are given for this conclusion

    Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

    Full text link
    The soft X-ray flux produced by solar axions in the Earth's magnetic field is evaluated in the context of ESA's XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The EPIC count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After examining the constituent observations spatially, temporally and in terms of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earth's magnetic field. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the micro-eV range. Comparisons with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the 0.01 eV range. Preliminary results are given of a search for axion-conversion X-ray lines, in particular the predicted features due to silicon, sulphur and iron in the solar core, and the 14.4 keV transition line from 57Fe.Comment: Accepted for publication in MNRAS. 67 pages total, including 39 figures, 6 table

    Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique

    Get PDF
    Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity

    A model for MRI contrast enhancement using T_1 agents

    Get PDF
    Contrast in MRI relies on differences in the local environment of water and is often enhanced by using contrast agents. We present a simple model for evaluating the minimal contrast agent concentration required to produce “satisfactory” contrast enhancement in magnetic resonance images. Previous strategies have been based largely on empirical results for specific systems. The present tissue contrast model (TCM) can be applied to “conventional,” targeted, or biochemically responsive agents. The model results are formulated so that only a small number of parameters are required to analyze a given scenario. The TCM is a particularly useful tool in the development of new classes of magnetic resonance contrast media. These agents will have the ability to target specific cells or tissue, and perhaps be able to report on their physiological status. As an example of the applicability of the TCM, we test it against in vivo magnetic resonance microscopy results in frog embryos that have focal cell populations labeled with contrast agent by using calibrated single-cell microinjection techniques

    Distinct Intracellular Trafficking Patterns of Host IgG by Herpes Virus Fc-Receptors

    Get PDF
    Members of both alpha and beta herpes viruses affects 50–98% of people around the world. They cause severe symptoms in congenitally infected newborns, a lifelong latent infection that is lethal in immunocompromised individuals, and are associated with several types of cancer. Human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) viruses express proteins (HCMV gp68 and gp34; HSV-1 gE-gI) that function as Fc receptors (FcRs) by binding to the Fc regions of human IgG. In addition to binding free IgG, these viral FcRs can bind to IgG complexed with an antigen to form an antibody bipolar bridged (ABB) complex. Although HCMV gp68 and HSV-1 gE-gI have an overlapping binding site on Fc, the finding that the gp68/Fc interaction is stable at pH values between 5.6 and 8.1 but that gE-gI binds only at neutral or basic pH suggests distinct pH-based downstream events after IgG is internalized via receptor-mediated endocytosis into intracellular compartments. Here we developed a cell-based in vitro model system to define the fates of ABB complexes formed by the two types of viral FcRs. We found that alpha (HSV-1) and beta (HCMV) herpes virus FcRs displayed distinct intracellular trafficking patterns to target internalized ligands: HSV-1 gE-gI dissociates from its IgG-antigen ligand in acidic endosomal compartments and recycles back to the cell surface, whereas HCMV FcRs (gp68) are transported together with IgG-antigen complexes to lysosomes for degradation. In both cases, anti-viral IgGs and their viral targets are selectively degraded, a potential immune evasion strategy allowing herpes viruses to escape from IgG-mediated immune responses
    • …
    corecore