22 research outputs found

    Soil suitability index identifies potential areas for groundwater banking on agricultural lands

    Full text link
    Groundwater pumping chronically exceeds natural recharge in many agricultural regions in California. A common method of recharging groundwater — when surface water is available — is to deliberately flood an open area, allowing water to percolate into an aquifer. However, open land suitable for this type of recharge is scarce. Flooding agricultural land during fallow or dormant periods has the potential to increase groundwater recharge substantially, but this approach has not been well studied. Using data on soils, topography and crop type, we developed a spatially explicit index of the suitability for groundwater recharge of land in all agricultural regions in California. We identified 3.6 million acres of agricultural land statewide as having Excellent or Good potential for groundwater recharge. The index provides preliminary guidance about the locations where groundwater recharge on agricultural land is likely to be feasible. A variety of institutional, infrastructure and other issues must also be addressed before this practice can be implemented widely

    Drought Tip: Drought Strategies for California Prune Production

    Full text link
    Here you'll find information that you can use to make the most effective irrigation decisions for using the water you have in your prune orchard. Included is a wide range of water supply availabilities, from no shortage to severe shortages

    “Smart” sprayer technology provides environmental and economic benefits in California orchards

    Full text link
    Spray applications of pesticides to orchards are a common cultural practice; however, they present environmental concerns due to emissions of volatile organic compounds (VOCs), runoff that can allow pesticides to enter waterways, and spray drift onto nontarget areas. Advanced sprayer technology can address these concerns and improve application efficiency by reducing the amount of spray that does not reach the target. Target-sensing sprayers were evaluated in multiseason experiments. They reduced pesticide application rates by 15% to 40% and nontarget orchard-floor deposition by 5% to 72%, providing significant environmental and economic benefits

    “Smart” sprayer technology provides environmental and economic benefits in California orchards

    Full text link
    Spray applications of pesticides to orchards are a common cultural practice; however, they present environmental concerns due to emissions of volatile organic compounds (VOCs), runoff that can allow pesticides to enter waterways, and spray drift onto nontarget areas. Advanced sprayer technology can address these concerns and improve application efficiency by reducing the amount of spray that does not reach the target. Target-sensing sprayers were evaluated in multiseason experiments. They reduced pesticide application rates by 15% to 40% and nontarget orchard-floor deposition by 5% to 72%, providing significant environmental and economic benefits
    corecore