372 research outputs found

    Effects of hypothalamic knife cuts and experience on maternal behavior in the rat

    Get PDF
    Recent investigations suggest that the disruption of placentophagia, pup-directed maternal behavior, and nestbuilding seen after lesions of the medial preoptic area (MPO) or the lateral hypothalamus may be due to the interruption at different points of a single longitudinal neural system mediating these behaviors. To test this, we compared the effects of knife cuts on the lateral border of the MPO, and of the posterior medial forebrain bundle (MFB), with asymmetrical cuts combining a unilateral MPO cut with a contralateral MFB cut. We observed placentophagia, nestbuilding, and pup-directed maternal behaviors at, and after, parturition in both primiparous and biparous rats. In primiparae, MPO cuts (a) disrupted placentophagia, (b) delayed the onset of crouching and pup-licking, and (c) eliminated retrieval and nestbuilding. Asymmetrical cuts (a) disrupted placentophagia, and (b) delayed the onset of maternal behavior. In biparous rats, MPO cuts eliminated nestbuilding and retrieval. MFB cuts (a) disrupted placentophagia, and (b) eliminated nestbuilding. Asymmetrical cuts (a) delayed nestbuilding. These results suggest the involvement of a longitudinal neural system in the production of immediate pup-directed maternal behavior, placentophagia, and nestbuilding in parturient primiparae, but which is not critical for the eventual display of maternal behavior and nestbuilding in maternally naive rats, nor for the immediate onset of placentophagia and maternal behavior in maternally experienced rats

    Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness

    Get PDF
    Aging elicits numerous effects that impact both musculoskeletal structure and walking function. Tendon stiffness (kT) and push-off propulsive force (FP) both impact the metabolic cost of walking and are diminished by age, yet their interaction has not been studied. We combined experimental and computational approaches to investigate whether age-related changes in function (adopting smaller FP) may be adopted to mitigate the metabolic consequences arising from changes in structure (reduced kT). We recruited 12 young adults and asked them to walk on a force-sensing treadmill while prompting them to change FP (±20% & ±40% of typical) using targeted biofeedback. In models driven by experimental data from each of those conditions, we altered the kT of personalized musculoskeletal models across a physiological range (2–8% strain) and simulated individual-muscle metabolic costs for each kT and FP combination. We found that kT and FP independently affect walking metabolic cost, increasing with higher kT or as participants deviated from their typical FP. Our results show no evidence for an interaction between kT and FP in younger adults walking at fixed speeds. We also reveal complex individual muscle responses to the kT and FP landscape. For example, although total metabolic cost increased by 5% on average with combined reductions in kT and FP, the triceps surae muscles experienced a 7% local cost reduction on average. Our simulations suggest that reducing FP during walking would not mitigate the metabolic consequences of lower kT. Wearable devices and rehabilitative strategies can focus on either kT or FP to reduce age-related increases in walking metabolic cost

    The effects of plantarflexor weakness and reduced tendon stiffness with aging on gait stability

    Get PDF
    Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle’s proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults–the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity

    Angle-dependent normalization of neutron-proton differential cross sections

    Get PDF
    Systematic errors in the database of npnp differential cross sections below 350 MeV are studied. By applying angle-dependent normalizations with the help of the energy-dependent Nijmegen partial-wave analysis PWA93 the χ2\chi^2-values of some seriously flawed data sets can be reduced significantly at the expense of a few degrees of freedom. It turns out that in these special cases the renormalized data sets can be made statistically acceptable such that they do not have to be discarded any longer in partial-wave analyses of the two-nucleon scattering data.Comment: 11 pages, 1 figure; expanded versio

    Effective chiral lagrangian in the chiral limit from the instanton vacuum

    Full text link
    We study the effective chiral Lagrangian in the chiral limit from the instanton vacuum. Starting from the nonlocal effective chiral action, we derive the effective chiral Lagrangian, using the derivative expansion to order O(p4)O(p^4) in the chiral limit. The low energy constants, L1L_1, L2L_2, and L3L_3 are determined and compared with various models and the corresponding empirical data. The results are in a good agreement with the data. We also discuss about the upper limit of the sigma meson, based on the present results.Comment: 14 pages, 5 figures, submitted to Phys.Rev.

    These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits

    Get PDF
    Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.R01 AG067394 - NIA NIH HHS; R01 HD095975 - NICHD NIH HHS; K01 HD079584 - NICHD NIH HHSPublished versio

    Numerical Results for Ground States of Mean-Field Spin Glasses at low Connectivities

    Full text link
    An extensive list of results for the ground state properties of spin glasses on random graphs is presented. These results provide a timely benchmark for currently developing theoretical techniques based on replica symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on fixed-connectivity graphs (Bethe lattices) exhibit a richer phenomenology than has been anticipated by theory. Our data prove to be sufficiently accurate to speculate about some exact results.Comment: 4 pages, RevTex4, 5 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS

    Spectral Properties of Quasiparticle Excitations Induced by Magnetic Moments in Superconductors

    Full text link
    The consequences of localized, classical magnetic moments in superconductors are explored and their effect on the spectral properties of the intragap bound states is studied. Above a critical moment, a localized quasiparticle excitation in an s-wave superconductor is spontaneously created near a magnetic impurity, inducing a zero-temperature quantum transition. In this transition, the spin quantum number of the ground state changes from zero to 1/2, while the total charge remains the same. In contrast, the spin-unpolarized ground state of a d-wave superconductor is found to be stable for any value of the magnetic moment when the normal-state energy spectrum possesses particle-hole symmetry. The effect of impurity scattering on the quasiparticle states is interpreted in the spirit of relevant symmetries of the clean superconductor. The results obtained by the non-self-consistent (T matrix) and the self-consistent mean-field approximations are compared and qualitative agreement between the two schemes is found in the regime where the coherence length is longer than the Fermi length.Comment: to appear in Phys. Rev. B55, May 1st (1997
    • …
    corecore