352 research outputs found

    Mio-Pliocene Faunal Exchanges and African Biogeography: The Record of Fossil Bovids

    Get PDF
    The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (∼5.7 and ∼5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today

    Feasibility of an in situ measurement device for bubble size and distribution

    Get PDF
    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam™, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles

    The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    Get PDF
    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement

    Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis

    Get PDF
    Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways

    Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis

    Get PDF
    Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways

    Strong expression of TGF-beta in human host tissues around subcutaneous Dirofilaria repens

    Get PDF
    Dirofilaria repens and other Dirofilaria species are widely distributed parasitic nematodes of carnivores, which occasionally are transmitted to men, causing subcutaneous nodules. In humans, it usually occurs only as single male or female filariae without production of microfilariae. The non-productive living or dead Dirofilaria worms in subcutaneous biopsies from 15 human patients permitted us to study the role of the pleiotropic and immunoregulatory cytokine transforming growth factor beta (TGF-beta) independent from the influence of microfilariae. Antiserum against latent TGF-beta 1 was used for an immunohistological examination. In the infiltrates around female and male filariae, there occurred strongly TGF-beta-positive macrophages, mast cells, endothelial cells, fibrocytes, and giant cells adjacent to dead worms. In one nodule, secondary lymph follicles were observed with clearly TGF-beta-positive B cells in the mantle zone and weakly positive macrophages and B cells in the germinal centre. A network of CD35-positive follicular dendritic cells was observed in the germinal centre. All Dirofilaria contained Wolbachia endobacteria, which probably had attracted the numerous TGF-beta-negative neutrophils near to the worm. Wolbachia were phagocytosed by neutrophils adjacent to dead filariae. Macrophages and lymphocytes expressed the MHC class II molecule HLA-DR in small accumulations of immune cells in the outer zone of the infiltrate and the mantle zone and germinal centre of secondary lymph follicles. It is concluded that single non-productive Dirofilaria worms elicit a strong expression of TGF-beta. This result is in accordance with observations on Onchocerca volvulus from patients with the hyporeactive (generalised) form

    Analysis of Two Novel Midgut-Specific Promoters Driving Transgene Expression in Anopheles stephensi Mosquitoes

    Get PDF
    Background: Tissue-specific promoters controlling the expression of transgenes in Anopheles mosquitoes represent a valuable tool both for studying the interaction between these malaria vectors and the Plasmodium parasites they transmit and for novel malaria control strategies based on developing Plasmodium-refractory mosquitoes by expressing anti-parasitic genes. With this aim we have studied the promoter regions of two genes from the most important malaria vector, Anopheles gambiae, whose expression is strongly induced upon blood feeding. Results: We analysed the A. gambiae Antryp1 and G12 genes, which we have shown to be midgut-specific and maximally expressed at 24 hours post-bloodmeal (PBM). Antryp1, required for bloodmeal digestion, encodes one member of a family of 7 trypsin genes. The G12 gene, of unknown function, was previously identified in our laboratory in a screen for genes induced in response to a bloodmeal. We fused 1.1 kb of the upstream regions containing the putative promoter of these genes to reporter genes and transformed these into the Indian malaria vector A. stephensi to see if we could recapitulate the expression pattern of the endogenous genes. Both the Antryp1 and G12 upstream regions were able to drive femalepredominant, midgut-specific expression in transgenic mosquitoes. Expression of the Antryp1-driven reporter in transgenic A. stephensi lines was low, undetectable by northern blot analysis, and failed to fully match the induction kinetics of the endogenous Antryp1 gene in A. gambiae. This incomplete conservation of expression suggests either subtle differences i

    A Novel Porcine In Vitro Model of the Blood-Cerebrospinal Fluid Barrier with Strong Barrier Function

    Get PDF
    Epithelial cells of the plexus choroideus form the structural basis of the blood-cerebrospinal fluid barrier (BCSFB). In vitro models of the BCSFB presenting characteristics of a functional barrier are of significant scientific interest as tools for examination of BCSFB function. Due to a lack of suitable cell lines as in vitro models, primary porcine plexus epithelial cells were subjected to a series of selective cultivation steps until a stable continuous subcultivatable epithelial cell line (PCP-R) was established. PCP-R cells grow in a regular polygonal pattern with a doubling time of 28–36 h. At a cell number of 1.5×105 in a 24-well plate confluence is reached in 56–72 h. Cells are cytokeratin positive and chromosomal analysis revealed 56 chromosomes at peak (84th subculture). Employing reverse transcription PCR mRNA expression of several transporters and components of cell junctions could be detected. The latter includes tight junction components like Claudin-1 and -3, ZO-1, and Occludin, and the adherens junction protein E-cadherin. Cellular localization studies of ZO-1, Occludin and Claudin-1 by immunofluorescence and morphological analysis by electron microscopy demonstrated formation of a dense tight junction structure. Importantly, when grown on cell culture inserts PCP-R developed typical characteristics of a functional BCSFB including high transepithelial electrical resistance above 600 Ω×cm2 as well as low permeability for macromolecules. In summary, our data suggest the PCP-R cell line as a suitable in vitro model of the porcine BCSFB
    corecore